Lower bounds for quantum-inspired classical algorithms via communication complexity

Changpeng Shao

Academy of Mathematics and Systems Science, CAS based on joint work with Nikhil S. Mande (U. Liverpool) arXiv:2402.15686

2024-03-21 Institute of Computing Technology, CAS

Main results

Key ingredient: communication complexity

Lower bounds for linear regression

Summary

Quantum computers can solve some problems much faster than classical computers.

- Quantum computers can solve some problems much faster than classical computers.
- For example, solving linear systems: given A, \mathbf{b} , output the quantum state $|A^{-1}\mathbf{b}\rangle$. The complexity is
 - $\widetilde{O}(\|A\|\|A^{-1}\|)$ if A is sparse [Ambainis '12]
 - $ightharpoonup \widetilde{O}(\|A\|_F\|A^{-1}\|)$ if A is stored in QRAM [Gilyén, Su, Low, Wiebe '18]

- Quantum computers can solve some problems much faster than classical computers.
- For example, solving linear systems: given A, \mathbf{b} , output the quantum state $|A^{-1}\mathbf{b}\rangle$. The complexity is
 - $ightharpoonup \widetilde{O}(\|A\|\|A^{-1}\|)$ if A is sparse [Ambainis '12]
 - $ightharpoonup \widetilde{O}(\|A\|_F \|A^{-1}\|)$ if A is stored in QRAM [Gilyén, Su, Low, Wiebe '18]
- ► Classically, the complexity is $O(n||A||||A^{-1}||)$ with output $A^{-1}\mathbf{b}$ by conjugate gradient, where n is the dimension.

- Quantum computers can solve some problems much faster than classical computers.
- For example, solving linear systems: given A, \mathbf{b} , output the quantum state $|A^{-1}\mathbf{b}\rangle$. The complexity is
 - $\widetilde{O}(\|A\|\|A^{-1}\|)$ if A is sparse [Ambainis '12]
 - $ightharpoonup \widetilde{O}(\|A\|_F\|A^{-1}\|)$ if A is stored in QRAM [Gilyén, Su, Low, Wiebe '18]
- ► Classically, the complexity is $O(n||A||||A^{-1}||)$ with output $A^{-1}\mathbf{b}$ by conjugate gradient, where n is the dimension.
- ightharpoonup Exponential quantum speedup wrt n!? The comparison maybe not fair because the outputs are different!

- Quantum computers can solve some problems much faster than classical computers.
- For example, solving linear systems: given A, \mathbf{b} , output the quantum state $|A^{-1}\mathbf{b}\rangle$. The complexity is
 - $\widetilde{O}(\|A\|\|A^{-1}\|)$ if A is sparse [Ambainis '12]
 - $ightharpoonup \widetilde{O}(\|A\|_F\|A^{-1}\|)$ if A is stored in QRAM [Gilyén, Su, Low, Wiebe '18]
- ► Classically, the complexity is $O(n||A||||A^{-1}||)$ with output $A^{-1}\mathbf{b}$ by conjugate gradient, where n is the dimension.
- ightharpoonup Exponential quantum speedup wrt n!? The comparison maybe not fair because the outputs are different!
- Need more attempts to convince classical/quantum computer scientists.

► From the quantum viewpoint, need to consider what can we do with a quantum state?

- ► From the quantum viewpoint, need to consider what can we do with a quantum state?
- For a quantum state $|\mathbf{x}\rangle = \sum_i x_i |i\rangle$, we can
 - **measure** it: obtain i with probability $|x_i|^2$, a sampling problem.
 - ightharpoonup query it: approximate x_i .
 - **approximate** norm: $\sum_i |x_i|^2$ for some problems.
 - **....**

- ► From the quantum viewpoint, need to consider what can we do with a quantum state?
- For a quantum state $|\mathbf{x}\rangle = \sum_i x_i |i\rangle$, we can
 - **measure** it: obtain i with probability $|x_i|^2$, a sampling problem.
 - ightharpoonup query it: approximate x_i .
 - **approximate norm:** $\sum_{i} |x_i|^2$ for some problems.
 - **....**
- So classically, we can similarly ask: what is the complexity of sampling/querying for $A^{-1}\mathbf{b}$? (a weaker problem than outputting a vector solution)

- From the quantum viewpoint, need to consider what can we do with a quantum state?
- For a quantum state $|\mathbf{x}\rangle = \sum_i x_i |i\rangle$, we can
 - **measure** it: obtain i with probability $|x_i|^2$, a sampling problem.
 - ightharpoonup query it: approximate x_i .
 - **approximate norm:** $\sum_{i} |x_i|^2$ for some problems.
 - **....**
- So classically, we can similarly ask: what is the complexity of sampling/querying for $A^{-1}\mathbf{b}$? (a weaker problem than outputting a vector solution)
- ► Call these algorithms quantum-inspired classical algorithms [Tang '18].

Quantum-inspired classical algorithms: assumptions

Definition 1 (Sampling and query access to a vector, SQ)

For a vector $\mathbf{v} = (v_1, \dots, v_n) \in \mathbb{C}^n$, we have $SQ(\mathbf{v})$, sampling and query access to \mathbf{v} , if we can

- 1. obtain independent samples of indices $i \in [n]$, each distributed as $\Pr(i) = |v_i|^2 / \|\mathbf{v}\|^2$;
- 2. query for entries of \mathbf{v} , i.e., given i, we can query v_i ;
- 3. query for $\|\mathbf{v}\|$.

Quantum-inspired classical algorithms: assumptions

Definition 1 (Sampling and query access to a vector, SQ)

For a vector $\mathbf{v} = (v_1, \dots, v_n) \in \mathbb{C}^n$, we have $SQ(\mathbf{v})$, sampling and query access to \mathbf{v} , if we can

- 1. obtain independent samples of indices $i \in [n]$, each distributed as $\Pr(i) = |v_i|^2 / ||\mathbf{v}||^2$;
- 2. query for entries of \mathbf{v} , i.e., given i, we can query v_i ;
- 3. query for $\|\mathbf{v}\|$.

Remarks.

- ightharpoonup Similar to the tasks that can be done by having $|\mathbf{v}\rangle$.
- We have a similar definition for matrices: SQ for each row + $SQ(||A_1||, ..., ||A_n||)$, where A_i is the i-th row.
- ► SQ can be achieved easily if v is stored in a dynamic data structure [Chia et al '19 arXiv:1910.06151].

Quantum-inspired classical algorithms: definition

By a QIC algorithm of (query) complexity T for a matrix-related problem, e.g., $\arg\min\|A\mathbf{x} - \mathbf{b}\|$, we mean we obtain $SQ(\mathbf{x})$ with T applications of SQ(A), $SQ(\mathbf{b})$ and an arbitrary number of other arithmetic operations that are independent of "SQ".

Some known results for linear regression

For the linear regression: given $SQ(A), SQ(\mathbf{b})$, output $SQ(\mathbf{x})$, where $\|\mathbf{x} - \mathbf{x}_*\| \le \varepsilon \|\mathbf{x}_*\|$, where $\mathbf{x}_* = A^{-1}\mathbf{b}$.

Some known results for linear regression

For the linear regression: given $SQ(A), SQ(\mathbf{b})$, output $SQ(\mathbf{x})$, where $\|\mathbf{x} - \mathbf{x}_*\| \le \varepsilon \|\mathbf{x}_*\|$, where $\mathbf{x}_* = A^{-1}\mathbf{b}$.

Progress on this problem: $\kappa_F = ||A||_F ||A^{-1}||, \ \kappa = ||A|| ||A^{-1}||,$

- $ightharpoonup \widetilde{O}(\kappa_F^{24})$ [Tang '18]
- $ightharpoonup \widetilde{O}(\kappa_F^6\kappa^{16})$ [Chia et al. '19]
- $ightharpoonup \widetilde{O}(\kappa_F^6\kappa^6)$ [Gilyén, Song, Tang '20]
- $ightharpoonup \widetilde{O}(\kappa_F^4 \kappa^2)$ [Montanaro, Shao '21] (consistent systems)
- $ightharpoonup \widetilde{O}(\kappa_F^2)$ [Montanaro, Shao '21] (row sparse consistent systems)
- $ightharpoonup \widetilde{O}(\kappa_F^4\kappa^{11})$ [Bakshi, Tang '23]

Some known results for linear regression

For the linear regression: given $SQ(A), SQ(\mathbf{b})$, output $SQ(\mathbf{x})$, where $\|\mathbf{x} - \mathbf{x}_*\| \le \varepsilon \|\mathbf{x}_*\|$, where $\mathbf{x}_* = A^{-1}\mathbf{b}$.

Progress on this problem: $\kappa_F = ||A||_F ||A^{-1}||, \ \kappa = ||A|| ||A^{-1}||,$

- $ightharpoonup \widetilde{O}(\kappa_F^{24})$ [Tang '18]
- $ightharpoonup \widetilde{O}(\kappa_F^6 \kappa^{16})$ [Chia et al. '19]
- $ightharpoonup \widetilde{O}(\kappa_F^6\kappa^6)$ [Gilyén, Song, Tang '20]
- $ightharpoonup \widetilde{O}(\kappa_F^4 \kappa^2)$ [Montanaro, Shao '21] (consistent systems)
- $ightharpoonup \widetilde{O}(\kappa_F^2)$ [Montanaro, Shao '21] (row sparse consistent systems)
- $ightharpoonup \widetilde{O}(\kappa_F^4 \kappa^{11})$ [Bakshi, Tang '23]

A nice survey paper: Many QIC algorithms for many different problems [Chia et al. '19, arXiv.1910.06151]

So what is the limit? No lower bounds known so far!

- Quantum-inspired classical algorithms show that, assuming certain data structures, there is no exponential speedup for linear systems, and indeed for many matrix-relevant problems.
 - \Rightarrow Quantum-classical separation is polynomial! e.g., at most quartic for linear regression.

- Quantum-inspired classical algorithms show that, assuming certain data structures, there is no exponential speedup for linear systems, and indeed for many matrix-relevant problems.
 - \Rightarrow Quantum-classical separation is polynomial! e.g., at most quartic for linear regression.
- Lower bounds can help:
 - 1. better understand quantum-classical separations
 - 2. see how far these classical algorithms are far from optimal

- Quantum-inspired classical algorithms show that, assuming certain data structures, there is no exponential speedup for linear systems, and indeed for many matrix-relevant problems.
 - \Rightarrow Quantum-classical separation is polynomial! e.g., at most quartic for linear regression.
- Lower bounds can help:
 - 1. better understand quantum-classical separations
 - 2. see how far these classical algorithms are far from optimal

The goal of this talk: we provide the first approach (?) of computing lower bounds.

- Quantum-inspired classical algorithms show that, assuming certain data structures, there is no exponential speedup for linear systems, and indeed for many matrix-relevant problems.
 - \Rightarrow Quantum-classical separation is polynomial! e.g., at most quartic for linear regression.
- Lower bounds can help:
 - 1. better understand quantum-classical separations
 - 2. see how far these classical algorithms are far from optimal

The goal of this talk: we provide the first approach (?) of computing lower bounds.

We are more concerned about the dependence on κ_F , because $||A||_F > ||A||$. So it is usually the dominating term.

Main results

Key ingredient: communication complexity

Lower bounds for linear regression

Summary

Summary of the main results for linear regression

Recall: $\kappa_F = ||A||_F ||A^{-1}||, \ \kappa = ||A|| ||A^{-1}||, \ \gamma = ||A\mathbf{x}_*||/||\mathbf{b}||$

	Algs	Upper bounds	Lower bounds
Row sparse	Q	$\widetilde{O}(\kappa_F/\gamma)$	$\widetilde{\Omega}(\kappa_F/\gamma)$
		$\widetilde{O}(\kappa/\gamma)$	$\widetilde{\Omega}(\kappa/\gamma)$
		column is sparse too	33(70/ /)
	QIC	$\widetilde{O}(\kappa_F^2)$	$\widetilde{\Omega}(\kappa_F^2 + 1/\gamma^2)$
		assumes $\gamma=1$	$\Gamma^{22}(n_F + 1/\gamma)$
Dense	Q	$\widetilde{O}(\kappa_F/\gamma)$	$\widetilde{\Omega}(\kappa_F/\gamma)$
	QIC	$\widetilde{O}(\kappa_F^4\kappa^{11}/arepsilon^2\gamma^2)$	
		$\widetilde{O}(\kappa_F^4\kappa^2/arepsilon^2)$	$\widetilde{\Omega}(\kappa_F^4 + 1/\gamma^2)^*$
		assumes $\gamma=1$	<□ > <∄ >

Summary of the main results for other problems

Problems	Upper bounds	Upper bounds	Lower bounds
Problems	(Q)	(QIC)	(QIC)
Clustering	$O(\frac{\ A\ _F^2\ \mathbf{b}\ ^2}{\varepsilon})$	$O(\frac{\ A\ _F^4\ \mathbf{b}\ ^4}{\varepsilon^2})$	$\Omega(\frac{\ A\ _F^4\ \mathbf{b}\ ^4}{\varepsilon})$
PCA	$O(\ A\ _F)$	$O(\ A\ _F^6)$	$\Omega(\ A\ _F^2)$
RecSys	$O(\ A\ _F)$	$O(\ A\ _F^4)$	$\Omega(\ A\ _F^2)$
HS	$O(\ A\ _F)$	$O(\ A\ _F^4)$	$\Omega(\ A\ _F^2)$

Main results

Key ingredient: communication complexity

Lower bounds for linear regression

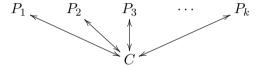
Summary

Key ingredient: communication complexity

- ▶ Introduced by Yao in 1979.
- Useful in many applications, especially lower bounds analysis.
- ▶ DISJ problem: Alice has $(x_1, \ldots, x_n) \in \{0, 1\}^n$ and Bob has $(y_1, \ldots, y_n) \in \{0, 1\}^n$, they want to determine if $\exists j$ such that $x_j = y_j = 1$ using as little communication as possible.
- ▶ CC = number of bits used in the communication.
- ► For DISJ, $CC = \Theta(n)$.[Razborov, '90].

Multi-player coordinator model (number in hand)

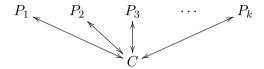
There are $k \geq 2$ players P_1, \ldots, P_k and a coordinator C:



Each player holds some private information, and their goal is to solve some problem using as little communication as possible.

Multi-player coordinator model (number in hand)

There are $k \geq 2$ players P_1, \ldots, P_k and a coordinator C:



Each player holds some private information, and their goal is to solve some problem using as little communication as possible.

For example, k-player DISJ problem:

 P_i has $x_i=(x_{i1},\ldots,x_{in})\in\{0,1\}^n$. Their goal is to determine if there is a $j\in\{2,\ldots,k\}$ such that $\mathrm{DISJ}(P_1,P_j)=1$.

 $CC = \Theta(kn)$ [Phillips, Verbin, Zhang, '11].

Key theorem: A connection between QIC and CC

Theorem 1

Assume P_i holds a matrix $A^{(i)} \in \mathbb{R}^{\ell_i \times n}$ and a vector $\mathbf{b}^{(i)} \in \mathbb{R}^{m_i}$ with $m := \sum_i \ell_i = \sum_i m_i$. Assume that all entries are specified by $O(\log q)$ bits. Let

$$A = \begin{pmatrix} A^{(1)} \\ \vdots \\ A^{(k)} \end{pmatrix}_{m \times n}, \quad \mathbf{b} = \begin{pmatrix} \mathbf{b}^{(1)} \\ \vdots \\ \mathbf{b}^{(k)} \end{pmatrix}_{m \times 1}.$$

Then we have the following:

- ▶ The coordinator C can use SQ(A) O(T) times, using $O((T + k) \log(qmn))$ bits of communication.
- ▶ The coordinator C can use $SQ(\mathbf{b})$ O(T) times, using $O((T+k)\log(qm))$ bits of communication.

Implications

Theorem 1 implies that a QIC algorithm of complexity T induces a communication protocol for the same problem with complexity $\widetilde{O}(T+k)$.

Implications

Theorem 1 implies that a QIC algorithm of complexity T induces a communication protocol for the same problem with complexity $\widetilde{O}(T+k)$.

- ▶ Prove lower bounds of QIC from CC. (✓)
- ▶ Propose efficient communication protocols from QIC.

A short proof for $SQ(\mathbf{b})$

Assume
$$k=2$$
 and $\mathbf{b}=\begin{pmatrix}\mathbf{b}_1\\\mathbf{b}_2\end{pmatrix}$, where Alice has $\mathbf{b}_1\in\mathbb{C}^m$ and Bob has $\mathbf{b}_2\in\mathbb{C}^n$.

▶ Query the *i*-th entry: if $i \le m$, then the coordinator C asks Alice return the *i*-th entry, otherwise asks Bob return the (i-m)-th entry

A short proof for $SQ(\mathbf{b})$

Assume
$$k=2$$
 and $\mathbf{b}=\begin{pmatrix}\mathbf{b}_1\\\mathbf{b}_2\end{pmatrix}$, where Alice has $\mathbf{b}_1\in\mathbb{C}^m$ and Bob has $\mathbf{b}_2\in\mathbb{C}^n$.

- ▶ Query the *i*-th entry: if $i \le m$, then the coordinator C asks Alice return the *i*-th entry, otherwise asks Bob return the (i-m)-th entry
- lacksquare Query the norm: Alice and Bob send $\|\mathbf{b}_1\|, \|\mathbf{b}_2\|$ to C.

A short proof for $SQ(\mathbf{b})$

Assume
$$k=2$$
 and $\mathbf{b}=\begin{pmatrix}\mathbf{b}_1\\\mathbf{b}_2\end{pmatrix}$, where Alice has $\mathbf{b}_1\in\mathbb{C}^m$ and Bob has $\mathbf{b}_2\in\mathbb{C}^n$.

- ▶ Query the *i*-th entry: if $i \le m$, then the coordinator C asks Alice return the *i*-th entry, otherwise asks Bob return the (i-m)-th entry
- lacksquare Query the norm: Alice and Bob send $\|\mathbf{b}_1\|, \|\mathbf{b}_2\|$ to C.
- ▶ Sampling: C samples an index $i \in \{1, 2\}$ from

$$\left\{ \frac{\|\mathbf{b}_1\|^2}{\|\mathbf{b}\|^2}, \quad \frac{\|\mathbf{b}_2\|^2}{\|\mathbf{b}\|^2} \right\}$$

If receives 1 then C asks Alice return a sample from \mathbf{b}_1 , otherwise C asks Bob return a sample from \mathbf{b}_2 .

Main results

Key ingredient: communication complexity

Lower bounds for linear regression

Summary

Lower bounds for linear regressions

Recall: we are given SQ(A) and $SQ(\mathbf{b})$, the goal is to output $SQ(\tilde{\mathbf{x}}_*)$ such that $\|\tilde{\mathbf{x}}_* - \mathbf{x}_*\| \le \varepsilon \|\mathbf{x}_*\|$, where $\mathbf{x}_* = A^+\mathbf{b}$.

There are 3 tasks in $SQ(\mathbf{x})$:

- ▶ Sampling: obtain i with probability $x_i^2/\|\mathbf{x}\|^2$
- ightharpoonup Query entries: given i output x_i
- Norm: output $\|\mathbf{x}\|^2$

Lower bounds for sampling

Proposition 1 (row sparse case)

Assume that A is row sparse and $\varepsilon \in (0,1)$ is a constant. Then ε -approximately sampling from $A^+\mathbf{b}$ requires making

$$\widetilde{\Omega}((\kappa^2 + \kappa_F)/\gamma)$$

calls to $SQ(A), SQ(\mathbf{b})$.

Based on k-DISJ: P_i has $T_i = (T_{i1}, \dots, T_{in}) \in \{0, 1\}^n$. Their goal is to determine if $\exists j \in \{2, \dots, k\}$ such that $\mathsf{DISJ}(P_1, P_j) = 1$.

Based on k-DISJ: P_i has $T_i = (T_{i1}, \dots, T_{in}) \in \{0, 1\}^n$. Their goal is to determine if $\exists j \in \{2, \dots, k\}$ such that DISJ $(P_1, P_j) = 1$.

Construction: let

$$\mathbf{t}_j = \sum_{\ell=1}^n T_{j\ell} |\ell\rangle_n, \quad |\mathbf{t}_j\rangle = \mathbf{t}_j / \|\mathbf{t}_j\|,$$

and

$$A = \begin{pmatrix} \beta | 1 \rangle_n & & \\ & | \mathbf{t}_2 \rangle & & \\ & & \ddots & \\ & & & | \mathbf{t}_k \rangle \end{pmatrix}_{kn \times k}, \quad \mathbf{b} = \begin{pmatrix} \beta | 1 \rangle_n \\ n | \mathbf{t}_1 \rangle \\ \vdots \\ n | \mathbf{t}_1 \rangle \end{pmatrix}_{kn \times 1},$$

where β is a free parameter.

If no such j:

$$\mathbf{x}_* = |1\rangle_k$$
.

If $DISJ(P_1, P_i) = 1$, then

$$\mathbf{x}_* = |1\rangle_k + \frac{n}{\|\mathbf{t}_1\| \|\mathbf{t}_j\|} |j\rangle_k \approx |1\rangle_k + |j\rangle_k$$

because k-DISJ is still hard when $\|\mathbf{t}_j\| = \Theta(n)$ for all j.

If no such j:

$$\mathbf{x}_* = |1\rangle_k$$
.

If $DISJ(P_1, P_i) = 1$, then

$$\mathbf{x}_* = |1\rangle_k + \frac{n}{\|\mathbf{t}_1\| \|\mathbf{t}_j\|} |j\rangle_k \approx |1\rangle_k + |j\rangle_k$$

because k-DISJ is still hard when $\|\mathbf{t}_j\| = \Theta(n)$ for all j.

Now

$$\kappa^2 = \frac{\max(\beta^2, 1)}{\min(\beta^2, 1)}, \quad \kappa_F^2 = \frac{\beta^2 + k - 1}{\min(\beta^2, 1)}, \quad \gamma^2 = \frac{\beta^2 + O(1)}{\beta^2 + (k - 1)n^2}.$$

If no such j:

$$\mathbf{x}_* = |1\rangle_k$$
.

If $DISJ(P_1, P_i) = 1$, then

$$\mathbf{x}_* = |1\rangle_k + \frac{n}{\|\mathbf{t}_1\| \|\mathbf{t}_j\|} |j\rangle_k \approx |1\rangle_k + |j\rangle_k$$

because k-DISJ is still hard when $\|\mathbf{t}_j\| = \Theta(n)$ for all j.

Now

$$\kappa^2 = \frac{\max(\beta^2, 1)}{\min(\beta^2, 1)}, \quad \kappa_F^2 = \frac{\beta^2 + k - 1}{\min(\beta^2, 1)}, \quad \gamma^2 = \frac{\beta^2 + O(1)}{\beta^2 + (k - 1)n^2}.$$

▶ If $\beta^2 = k$, then $\kappa^2, \kappa_F^2 = \Theta(k), \gamma^2 = \Theta(1/n^2) \Rightarrow$ a lower bound is $\Omega(\kappa^2/\gamma)$ because CC(k-DISJ)= $\Theta(kn)$.

If no such i:

$$\mathbf{x}_* = |1\rangle_k$$
.

If $DISJ(P_1, P_i) = 1$, then

$$\mathbf{x}_* = |1\rangle_k + \frac{n}{\|\mathbf{t}_1\| \|\mathbf{t}_j\|} |j\rangle_k \approx |1\rangle_k + |j\rangle_k$$

because k-DISJ is still hard when $\|\mathbf{t}_j\| = \Theta(n)$ for all j.

Now

$$\kappa^2 = \frac{\max(\beta^2, 1)}{\min(\beta^2, 1)}, \quad \kappa_F^2 = \frac{\beta^2 + k - 1}{\min(\beta^2, 1)}, \quad \gamma^2 = \frac{\beta^2 + O(1)}{\beta^2 + (k - 1)n^2}.$$

- ▶ If $\beta^2 = k$, then $\kappa^2, \kappa_F^2 = \Theta(k), \gamma^2 = \Theta(1/n^2) \Rightarrow$ a lower bound is $\Omega(\kappa^2/\gamma)$ because $CC(k-DISJ) = \Theta(kn)$.
- $\text{If } \beta^2=1 \text{, then } \kappa=1, \kappa_F^2=\Theta(k), \gamma^2=\Theta(1/kn^2) \Rightarrow \text{a lower bound is } \Omega(\kappa_F/\gamma).$

Lower bounds for sampling

Proposition 2 (dense case)

Assume that $\varepsilon \in (0,1)$ is a constant. Then ε -approximately sampling from $A^+\mathbf{b}$ requires making

$$\widetilde{\Omega}(\kappa_F^2)$$

calls to $SQ(A), SQ(\mathbf{b})$.

Based on distributed sampling problem: Alice has $f:\{0,1\}^n \to \{\pm 1\}$ and Bob has $g:\{0,1\}^n \to \{\pm 1\}$. Their goal is to approximately sample from the distribution defined by

$$\Pr(y) := \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x)g(x)(-1)^{x \cdot y}\right)^2.$$

 $\mathsf{CC} = \Omega(2^n)$ [Montanaro '19]

Based on distributed sampling problem: Alice has $f:\{0,1\}^n \to \{\pm 1\}$ and Bob has $g:\{0,1\}^n \to \{\pm 1\}$. Their goal is to approximately sample from the distribution defined by

$$\Pr(y) := \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x)g(x)(-1)^{x \cdot y}\right)^2.$$

 $\mathsf{CC} = \Omega(2^n)$ [Montanaro '19]

Let $D_f = \sum_x f(x)|x\rangle\langle x|$ and $|g\rangle = \frac{1}{\sqrt{2^n}}\sum_x g(x)|x\rangle$, then the distribution is defined by the state $(D_f H^{\otimes n})^{-1}|g\rangle$, where $H = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

Based on distributed sampling problem: Alice has $f:\{0,1\}^n \to \{\pm 1\}$ and Bob has $g:\{0,1\}^n \to \{\pm 1\}$. Their goal is to approximately sample from the distribution defined by

$$\Pr(y) := \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x)g(x)(-1)^{x \cdot y}\right)^2.$$

 $\mathsf{CC} = \Omega(2^n)$ [Montanaro '19]

Let $D_f = \sum_x f(x)|x\rangle\langle x|$ and $|g\rangle = \frac{1}{\sqrt{2^n}}\sum_x g(x)|x\rangle$, then the distribution is defined by the state $(D_f H^{\otimes n})^{-1}|g\rangle$, where $H = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

Now we have $\kappa_F^2 = 2^n$, $\kappa = \gamma = 1$. So we obtain a lower bound of $\widetilde{\Omega}(\kappa_F^2)$.

Lower bounds for norm approximation

Proposition 3 (Sparse case)

Assume that A is row sparse and $\varepsilon \in (0,1)$. Then approximating $||A^+\mathbf{b}||$ up to relative error ε requires making

$$\widetilde{\Omega}(\kappa_F^2 + 1/\gamma^2)$$

calls to $SQ(A), SQ(\mathbf{b})$.

Gap-Hamming problem: Alice has $\mathbf{a}=(a_1,\ldots,a_n)\in\{\pm 1\}^n$ and Bob has $\mathbf{b}=(b_1,\ldots,b_n)\in\{\pm 1\}^n$. The goal is to determine if $\mathbf{a}\cdot\mathbf{b}\geq\sqrt{n}$ or $\leq-\sqrt{n}$. CC = $\Theta(n)$. [Chakrabarti, Regev '11]

Gap-Hamming problem: Alice has $\mathbf{a}=(a_1,\ldots,a_n)\in\{\pm 1\}^n$ and Bob has $\mathbf{b}=(b_1,\ldots,b_n)\in\{\pm 1\}^n$. The goal is to determine if $\mathbf{a}\cdot\mathbf{b}\geq\sqrt{n}$ or $\leq-\sqrt{n}$. CC = $\Theta(n)$. [Chakrabarti, Regev '11]

Construction:

$$A = \begin{pmatrix} 1 & a_1/\sqrt{n} \\ & \ddots & \vdots \\ & 1 & a_n/\sqrt{n} \\ & & 1 \end{pmatrix}, \quad \tilde{\mathbf{b}} = \begin{pmatrix} b_1/\sqrt{n} \\ \vdots \\ b_n/\sqrt{n} \\ 1 \end{pmatrix}.$$

The solution of $A\mathbf{x} = \tilde{\mathbf{b}}$ is $\mathbf{x} = |n+1\rangle + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (b_i - a_i) |i\rangle$. So $\|\mathbf{x}\|^2 = 3 - \frac{2}{n} \mathbf{a} \cdot \mathbf{b}$.

Gap-Hamming problem: Alice has $\mathbf{a}=(a_1,\ldots,a_n)\in\{\pm 1\}^n$ and Bob has $\mathbf{b}=(b_1,\ldots,b_n)\in\{\pm 1\}^n$. The goal is to determine if $\mathbf{a}\cdot\mathbf{b}\geq\sqrt{n}$ or $\leq-\sqrt{n}$. CC = $\Theta(n)$. [Chakrabarti, Regev '11]

Construction:

$$A = \begin{pmatrix} 1 & a_1/\sqrt{n} \\ & \ddots & \vdots \\ & 1 & a_n/\sqrt{n} \\ & & 1 \end{pmatrix}, \quad \tilde{\mathbf{b}} = \begin{pmatrix} b_1/\sqrt{n} \\ \vdots \\ b_n/\sqrt{n} \\ 1 \end{pmatrix}.$$

The solution of $A\mathbf{x} = \tilde{\mathbf{b}}$ is $\mathbf{x} = |n+1\rangle + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (b_i - a_i) |i\rangle$. So $\|\mathbf{x}\|^2 = 3 - \frac{2}{n} \mathbf{a} \cdot \mathbf{b}$.

- ▶ If $\mathbf{a} \cdot \mathbf{b} \ge \sqrt{n}$, then $\|\mathbf{x}\|^2 \le 3 2/\sqrt{n}$
- ▶ If $\mathbf{a} \cdot \mathbf{b} \leq -\sqrt{n}$, then $\|\mathbf{x}\|^2 \geq 3 + 2/\sqrt{n}$

Gap-Hamming problem: Alice has $\mathbf{a}=(a_1,\ldots,a_n)\in\{\pm 1\}^n$ and Bob has $\mathbf{b}=(b_1,\ldots,b_n)\in\{\pm 1\}^n$. The goal is to determine if $\mathbf{a}\cdot\mathbf{b}\geq\sqrt{n}$ or $\leq-\sqrt{n}$. CC = $\Theta(n)$. [Chakrabarti, Regev '11]

Construction:

$$A = \begin{pmatrix} 1 & a_1/\sqrt{n} \\ & \ddots & \vdots \\ & 1 & a_n/\sqrt{n} \\ & & 1 \end{pmatrix}, \quad \tilde{\mathbf{b}} = \begin{pmatrix} b_1/\sqrt{n} \\ \vdots \\ b_n/\sqrt{n} \\ 1 \end{pmatrix}.$$

The solution of $A\mathbf{x} = \tilde{\mathbf{b}}$ is $\mathbf{x} = |n+1\rangle + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (b_i - a_i) |i\rangle$. So $\|\mathbf{x}\|^2 = 3 - \frac{2}{n} \mathbf{a} \cdot \mathbf{b}$.

- ▶ If $\mathbf{a} \cdot \mathbf{b} \ge \sqrt{n}$, then $\|\mathbf{x}\|^2 \le 3 2/\sqrt{n}$
- ▶ If $\mathbf{a} \cdot \mathbf{b} \leq -\sqrt{n}$, then $\|\mathbf{x}\|^2 \geq 3 + 2/\sqrt{n}$

So choose $\varepsilon \approx 1/\sqrt{n}$. Fortunately, the dependence on ε is $\log(1/\varepsilon)$ for QIC. Now $\kappa_F^2 = \Theta(n), \kappa = \Theta(1), \gamma = 1$. So we obtain a lower bound of $\Omega(\kappa_F^2)$.

Lower bounds for querying an entry

Proposition 4

Assume that A is sparse and $\varepsilon \in (0,1)$. Then there is an index i such that computing x_i with $|x_i - (A^+\mathbf{b})_i| \le \varepsilon$ requires making $\widetilde{\Omega}(\kappa_F^2 + 1/\gamma^2)$ calls to $SQ(A), SQ(\mathbf{b})$.

Still based on Gap-Hamming problem. Let

$$A = \begin{pmatrix} 1/a_1 & -t & & & \\ & a_1/a_2 & \ddots & & \\ & & \ddots & -t & \\ & & & a_{n-1}/a_n \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2/t \\ \vdots \\ b_n/t^{n-1} \end{pmatrix}.$$

The first entry of the solution of $A\mathbf{x}=\mathbf{b}$ is $\sum_i a_i b_i$. If we choose t=1/2, then $\kappa=\Theta(1), \kappa_F^2=\Theta(n)$ and $\gamma=1$. This leads to a lower bound of $\widetilde{\Omega}(\kappa_F^2)$.

Lower bounds for norm approximation

Proposition 5 (Dense case)

Assume that $\varepsilon \in (0,1)$. Then approximating $\|A^+\mathbf{b}\|^2$ up to additive error ε requires making $\widetilde{\Omega}(\kappa_F^4)$ calls to $SQ(A), SQ(\mathbf{b})$.

Lower bounds for norm approximation

Proposition 5 (Dense case)

Assume that $\varepsilon \in (0,1)$. Then approximating $||A^+\mathbf{b}||^2$ up to additive error ε requires making $\widetilde{\Omega}(\kappa_F^4)$ calls to $SQ(A), SQ(\mathbf{b})$.

Based on k-Gap-Hamming problem: For $i \in \{1, \ldots, k+1\}$, player P_i has $\mathbf{a}_i \in \{\pm 1\}^n$ with the promise that $\mathbf{a} := \sum_{i=1}^k \mathbf{a}_i \in \{\pm 1\}^n$ and $\mathbf{a} \cdot \mathbf{a}_{k+1} \in [-c_2\sqrt{n}, c_2\sqrt{n}]$. Their goal is to determine if $\mathbf{a} \cdot \mathbf{a}_{k+1} \ge c_1\sqrt{n}$ or $\le -c_1\sqrt{n}$. Here $0 < c_1 < c_2$ are constants.

 $CC = \Omega(kn)$. [Li, Lin, Woodruff, '23]

Let $e = \frac{1}{m}(1, \dots, 1) \in \mathbb{R}^n$, where m is an integer such that $e \cdot \mathbf{a}_{k+1} = O(1)$.

Let $M \in \mathbb{R}^{k \times n}$ be the matrix such that the *i*-th row is $\mathbf{a}_i + \mathbf{e}$ and

$$A = \begin{pmatrix} I_n & \mathbf{0} \\ M/2n & I_k \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} -2n\mathbf{a}_{k+1} \\ \mathbf{0} \end{pmatrix}.$$

The solution is

$$\mathbf{x} = \begin{pmatrix} -2n\mathbf{a}_{k+1} \\ (\mathbf{a}_1 + \mathbf{e}) \cdot \mathbf{a}_{k+1} \\ \vdots \\ (\mathbf{a}_1 + \mathbf{e}) \cdot \mathbf{a}_{k+1} \end{pmatrix}.$$

$$\|\mathbf{x}\|^2 = 4n^3 + \sum_{i=1}^k \left((\mathbf{a}_i \cdot \mathbf{a}_{k+1})^2 + (\mathbf{a}_{k+1} \cdot \mathbf{e})^2 + 2(\mathbf{a}_i \cdot \mathbf{a}_{k+1})(\mathbf{a}_{k+1} \cdot \mathbf{e}) \right).$$

So

$$\|\mathbf{x}\|^2 = 4n^3 + \sum_{i=1}^k \left((\mathbf{a}_i \cdot \mathbf{a}_{k+1})^2 + (\mathbf{a}_{k+1} \cdot \mathbf{e})^2 + 2(\mathbf{a}_i \cdot \mathbf{a}_{k+1})(\mathbf{a}_{k+1} \cdot \mathbf{e}) \right).$$

Similarly, if we set M to be the matrix such that the i-th row is $a_i - e$, then

$$\|\mathbf{x}'\|^2 = 4n^3 + \sum_{i=1}^k \left((\mathbf{a}_i \cdot \mathbf{a}_{k+1})^2 + (\mathbf{a}_{k+1} \cdot \mathbf{e})^2 - 2(\mathbf{a}_i \cdot \mathbf{a}_{k+1})(\mathbf{a}_{k+1} \cdot \mathbf{e}) \right).$$

So

$$\|\mathbf{x}\|^2 = 4n^3 + \sum_{i=1}^k \left((\mathbf{a}_i \cdot \mathbf{a}_{k+1})^2 + (\mathbf{a}_{k+1} \cdot \mathbf{e})^2 + 2(\mathbf{a}_i \cdot \mathbf{a}_{k+1})(\mathbf{a}_{k+1} \cdot \mathbf{e}) \right).$$

Similarly, if we set M to be the matrix such that the i-th row is $a_i - e$, then

$$\|\mathbf{x}'\|^2 = 4n^3 + \sum_{i=1}^k \left((\mathbf{a}_i \cdot \mathbf{a}_{k+1})^2 + (\mathbf{a}_{k+1} \cdot \mathbf{e})^2 - 2(\mathbf{a}_i \cdot \mathbf{a}_{k+1})(\mathbf{a}_{k+1} \cdot \mathbf{e}) \right).$$

Now

$$\|\mathbf{x}\|^2 - \|\mathbf{x}'\|^2 = 4(\mathbf{a}_{k+1} \cdot \mathbf{e}) \sum_{i=1}^k (\mathbf{a}_i \cdot \mathbf{a}_{k+1}).$$

Since $\mathbf{a}_{k+1} \cdot \mathbf{e} = \Theta(1)$, if we can approximate $\|\mathbf{x}\|^2 - \|\mathbf{x}'\|^2$, we then can solve the k-Gap-Hamming problem.

So

$$\|\mathbf{x}\|^2 = 4n^3 + \sum_{i=1}^k \left((\mathbf{a}_i \cdot \mathbf{a}_{k+1})^2 + (\mathbf{a}_{k+1} \cdot \mathbf{e})^2 + 2(\mathbf{a}_i \cdot \mathbf{a}_{k+1})(\mathbf{a}_{k+1} \cdot \mathbf{e}) \right).$$

Similarly, if we set M to be the matrix such that the i-th row is $a_i - e$, then

$$\|\mathbf{x}'\|^2 = 4n^3 + \sum_{k=1}^{k} \left((\mathbf{a}_i \cdot \mathbf{a}_{k+1})^2 + (\mathbf{a}_{k+1} \cdot \mathbf{e})^2 - 2(\mathbf{a}_i \cdot \mathbf{a}_{k+1})(\mathbf{a}_{k+1} \cdot \mathbf{e}) \right).$$

Now

$$\|\mathbf{x}\|^2 - \|\mathbf{x}'\|^2 = 4(\mathbf{a}_{k+1} \cdot \mathbf{e}) \sum_{i=1}^k (\mathbf{a}_i \cdot \mathbf{a}_{k+1}).$$

Since $\mathbf{a}_{k+1} \cdot \mathbf{e} = \Theta(1)$, if we can approximate $\|\mathbf{x}\|^2 - \|\mathbf{x}'\|^2$, we then can solve the k-Gap-Hamming problem.

Now $\kappa_F^2=k+n$, $\kappa=\Theta(1)$ and $\gamma=1$. Yields a lower bound of $\Omega(\kappa_F^4)$ by setting $k\approx n$.

Lower bounds for querying an entry

Proposition 6 (Dense case)

Assume that $\varepsilon \in (0,1)$. Then there is an index i such that computing x_i with $|x_i - (A^+\mathbf{b})_i| \le \varepsilon$ requires making $\widetilde{\Omega}(\kappa_F^4)$ calls to $SQ(A), SQ(\mathbf{b})$.

Lower bounds for querying an entry

Proposition 6 (Dense case)

Assume that $\varepsilon \in (0,1)$. Then there is an index i such that computing x_i with $|x_i - (A^+\mathbf{b})_i| \le \varepsilon$ requires making $\widetilde{\Omega}(\kappa_F^4)$ calls to $SQ(A), SQ(\mathbf{b})$.

Still based on k-Gap-Hamming problem. Now

$$A = \begin{pmatrix} I_n & \mathbf{0} \\ M/2n & I_k \end{pmatrix} \begin{pmatrix} I_n & \mathbf{0} \\ \mathbf{0} & H^{\otimes l} \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} -2n\mathbf{a}_{k+1} \\ \mathbf{0} \end{pmatrix}.$$

The solution is

$$\mathbf{x} = \begin{pmatrix} -2n\mathbf{a}_{k+1} \\ \frac{1}{\sqrt{k}} \sum_{i=1}^{k} \mathbf{a}_i \cdot \mathbf{a}_{k+1} \\ \vdots \end{pmatrix}.$$

The (n+1)-th is $\sum_i \mathbf{a}_i \cdot \mathbf{b}/\sqrt{k}$. In particular, if $k = c_1 n$, then $\frac{1}{\sqrt{L}} \sum_{i=1}^k \mathbf{a}_i \cdot \mathbf{a}_{k+1} \ge c_1 \sqrt{n}$ or $\le -c_1 \sqrt{n}$.

Background

Main results

Key ingredient: communication complexity

Lower bounds for linear regression

Summary

Summary

- Provide an approach to prove lower bounds of quantum-inspired classical algorithms.
- We only made some partial progress using this approach.
- Not covered:
 - lower bounds for other problems
 - reduction from quantum query to communication complexity for matrix-relevant problems

▶ Prove tighter lower bounds in the dense case for linear regression.

- Prove tighter lower bounds in the dense case for linear regression. The main difficulty:
 - ▶ There are many parameters to be considered: κ_F, κ, γ .
 - Find the right reduction from linear regression to some problems in communication complexity (number in hand model).
 - ▶ In the reduction, we need to estimate κ_F, κ, γ efficiently.

- Prove tighter lower bounds in the dense case for linear regression. The main difficulty:
 - ▶ There are many parameters to be considered: κ_F, κ, γ .
 - Find the right reduction from linear regression to some problems in communication complexity (number in hand model).
 - ▶ In the reduction, we need to estimate κ_F, κ, γ efficiently.
- Prove tighter lower bounds for other problems.

- Prove tighter lower bounds in the dense case for linear regression. The main difficulty:
 - ▶ There are many parameters to be considered: κ_F, κ, γ .
 - Find the right reduction from linear regression to some problems in communication complexity (number in hand model).
 - ▶ In the reduction, we need to estimate κ_F, κ, γ efficiently.
- Prove tighter lower bounds for other problems.
- Propose efficient communication protocols from quantum-inspired classical algorithms.

- Prove tighter lower bounds in the dense case for linear regression. The main difficulty:
 - ▶ There are many parameters to be considered: κ_F, κ, γ .
 - Find the right reduction from linear regression to some problems in communication complexity (number in hand model).
 - ▶ In the reduction, we need to estimate κ_F, κ, γ efficiently.
- Prove tighter lower bounds for other problems.
- Propose efficient communication protocols from quantum-inspired classical algorithms.

Thanks very much for your attention!