Quantum Spectral Method for Gradient and Hessian Estimation

Changpeng Shao

Academy of Mathematics and Systems Science, Chinese Academy of Sciences joint work with Yuxin Zhang arXiv:2407.03833

The 3rd CCF Quantum Computation Conference 3-4 August 2024

Two motivating quotes

Figure 1: Gian-Carlo Rota: Every mathematician has only a few tricks.

Figure 2: George Pólya: An idea which can be used once is a trick. If it can be used more than once it becomes a method.

Quantum computing

▶ Quantum Fourier Transform (QFT) plays an important in the design of quantum algorithms, for example,

Deutsch-Jozsa algorithm, Bernstein-Vazirani algorithm, Simon's algorithm, Guantum phase estimation algorithm, the HHL algorithm for linear systems, ...

Quantum computing

- Quantum Fourier Transform (QFT) plays an important in the design of quantum algorithms, for example,
 - Deutsch-Jozsa algorithm, Bernstein-Vazirani algorithm, Simon's algorithm, Shor's algorithm, Quantum phase estimation algorithm, the HHL algorithm for linear systems, ...
- ► In this talk, we are considering the application of QFT at the estimation of gradient vector and Hessian matrix of multivariate functions.

Why estimate gradient and Hessian?

- Useful in many optimisation algorithms, such as gradient descent and Newton's algorithm. So corresponding results can be used to speed up optimisation problems. For example,
 - quantum speedup of convex optimisation
 [van Apeldoorn, Gilyén, Gribling, de Wolf (QIP 2019)]
 [Chakrabarti, Childs, Li, Wu (QIP 2019)]
 - quantum speedup of linear programming [Apers, Gribling (QIP 2024)]

Why estimate gradient and Hessian?

- Useful in many optimisation algorithms, such as gradient descent and Newton's algorithm. So corresponding results can be used to speed up optimisation problems. For example,
 - quantum speedup of convex optimisation [van Apeldoorn, Gilyén, Gribling, de Wolf (QIP 2019)] [Chakrabarti, Childs, Li, Wu (QIP 2019)]
 - quantum speedup of linear programming [Apers, Gribling (QIP 2024)]
- Subroutine of many other quantum algorithms. For example,
 - quantum advantage of shallow circuits [Bravyi, Gosset, Koenig (Science 2018)]
 - quantum tomography
 [van Apeldoorn, Cornelissen, Gilyén, Nannicini (SODA 2023)]
 - quantum algorithm for estimating multiple expectation values [Huggins, Wan, McClean, O'Brien, Wiebe, Babbush (PRL 129, 240501)]

Problem (Gradient estimation)

Let $\varepsilon \in (0,1)$ be the accuracy. Given a differentiable function $f: \mathbb{R}^d \to \mathbb{R}$, and oracle to query f, compute an approximate gradient $g \in \mathbb{R}^d$ such that $\|g - \nabla f(\mathbf{0})\|_{\infty} \leq \varepsilon$.

Problem (Gradient estimation)

Let $\varepsilon \in (0,1)$ be the accuracy. Given a differentiable function $f: \mathbb{R}^d \to \mathbb{R}$, and oracle to query f, compute an approximate gradient $g \in \mathbb{R}^d$ such that $\|g - \nabla f(\mathbf{0})\|_{\infty} \leq \varepsilon$.

ightharpoonup Oracle: $O_f: |x\rangle \to e^{if(x)}|x\rangle$.

Problem (Gradient estimation)

Let $\varepsilon \in (0,1)$ be the accuracy. Given a differentiable function $f: \mathbb{R}^d \to \mathbb{R}$, and oracle to query f, compute an approximate gradient $g \in \mathbb{R}^d$ such that $\|g - \nabla f(\mathbf{0})\|_{\infty} \leq \varepsilon$.

- ▶ Oracle: $O_f: |x\rangle \to e^{if(x)}|x\rangle$.
- **Query complexity:** the minimal number of calls to O_f to find g.

Problem (Gradient estimation)

Let $\varepsilon \in (0,1)$ be the accuracy. Given a differentiable function $f: \mathbb{R}^d \to \mathbb{R}$, and oracle to query f, compute an approximate gradient $g \in \mathbb{R}^d$ such that $\|g - \nabla f(\mathbf{0})\|_{\infty} \leq \varepsilon$.

- ightharpoonup Oracle: $O_f: |x\rangle \to e^{if(x)}|x\rangle$.
- ightharpoonup Query complexity: the minimal number of calls to O_f to find g.

A quantum query algorithm of complexity T has the form: $U_TO_f\cdots U_1O_fU_0$. Usually, U_0,U_1,\ldots,U_T are simple gates, so the gate complexity \approx query complexity.

Problem (Gradient estimation)

Let $\varepsilon \in (0,1)$ be the accuracy. Given a differentiable function $f: \mathbb{R}^d \to \mathbb{R}$, and oracle to query f, compute an approximate gradient $g \in \mathbb{R}^d$ such that $\|g - \nabla f(\mathbf{0})\|_{\infty} \le \varepsilon$.

- ightharpoonup Oracle: $O_f: |x\rangle \to e^{if(x)}|x\rangle$.
- ightharpoonup Query complexity: the minimal number of calls to O_f to find g.

A quantum query algorithm of complexity T has the form: $U_TO_f\cdots U_1O_fU_0$. Usually, U_0,U_1,\ldots,U_T are simple gates, so the gate complexity \approx query complexity.

In addition, for query complexity, we can prove nontrivial lower bounds. So it can be used to separate quantum and classical computing.

In 2005, Jordan proposed a fast quantum algorithm for numerical gradient estimation.

In 2005, Jordan proposed a fast quantum algorithm for numerical gradient estimation.

For illustration, consider the special case that $f(x) = g \cdot x$ is a real-valued linear function for some unknown vector $g = (g_1, \dots, g_d) \in \mathbb{Z}_N^d$.

In 2005, Jordan proposed a fast quantum algorithm for numerical gradient estimation.

For illustration, consider the special case that $f(x) = g \cdot x$ is a real-valued linear function for some unknown vector $g = (g_1, \dots, g_d) \in \mathbb{Z}_N^d$.

Given a phase oracle $O_f: |x\rangle \to e^{2\pi i f(x)/N} |x\rangle$, we can generate the quantum state:

In 2005, Jordan proposed a fast quantum algorithm for numerical gradient estimation.

For illustration, consider the special case that $f(x) = g \cdot x$ is a real-valued linear function for some unknown vector $g = (g_1, \dots, g_d) \in \mathbb{Z}_N^d$.

Given a phase oracle $O_f: |x\rangle \to e^{2\pi i f(x)/N} |x\rangle$, we can generate the quantum state:

$$\frac{1}{\sqrt{N^d}} \sum_{\boldsymbol{x} \in \mathbb{Z}_d^d} e^{\frac{2\pi i f(\boldsymbol{x})}{N}} |\boldsymbol{x}\rangle = \bigotimes_{j=1}^d \frac{1}{\sqrt{N}} \sum_{x_j \in \mathbb{Z}_N} e^{\frac{2\pi i g_j x_j}{N}} |x_j\rangle.$$

In 2005, Jordan proposed a fast quantum algorithm for numerical gradient estimation.

For illustration, consider the special case that $f(x) = g \cdot x$ is a real-valued linear function for some unknown vector $g = (g_1, \dots, g_d) \in \mathbb{Z}_N^d$.

Given a phase oracle $O_f: |x\rangle \to e^{2\pi i f(x)/N} |x\rangle$, we can generate the quantum state:

$$\frac{1}{\sqrt{N^d}} \sum_{\boldsymbol{x} \in \mathbb{Z}_N^d} e^{\frac{2\pi i f(\boldsymbol{x})}{N}} |\boldsymbol{x}\rangle = \bigotimes_{j=1}^d \frac{1}{\sqrt{N}} \sum_{x_j \in \mathbb{Z}_N} e^{\frac{2\pi i g_j x_j}{N}} |x_j\rangle.$$

We will obtain $|g_1, \dots, g_d\rangle$ by applying the inverse QFT to the above state.

The query complexity of this algorithm is O(1) when f(x) is close to a linear function $g \cdot x$, which is exponentially faster than classical algorithms.

The query complexity of this algorithm is O(1) when f(x) is close to a linear function $g \cdot x$, which is exponentially faster than classical algorithms.

Theorem (Jordan)

Let $g \in \mathbb{R}^d$ and $a, \varepsilon \in \mathbb{R}_+$. Suppose we have \tilde{f} such that

$$|\tilde{f}(x) - g \cdot x| \le \frac{\varepsilon a}{8 \cdot 42\pi},$$
 (1)

and oracle $O: |\mathbf{x}\rangle \to e^{2\pi i 2^{n_{\varepsilon}} \tilde{f}(\mathbf{x})} |\mathbf{x}\rangle$, where $2^{n_{\varepsilon}} = 4/a\varepsilon$. Then $\widetilde{O}(1)$ queries to O can gives us $\tilde{\mathbf{q}} \in \mathbb{R}^d$ such that

$$\|\tilde{\boldsymbol{g}} - \boldsymbol{g}\|_{\infty} \leq \varepsilon.$$

The query complexity of this algorithm is O(1) when f(x) is close to a linear function $g \cdot x$, which is exponentially faster than classical algorithms.

Theorem (Jordan)

Let $g \in \mathbb{R}^d$ and $a, \varepsilon \in \mathbb{R}_+$. Suppose we have \tilde{f} such that

$$|\tilde{f}(\boldsymbol{x}) - \boldsymbol{g} \cdot \boldsymbol{x}| \le \frac{\varepsilon a}{8 \cdot 42\pi},$$
 (1)

and oracle $O: |\mathbf{x}\rangle \to e^{2\pi i 2^{n_{\varepsilon}} \tilde{f}(\mathbf{x})} |\mathbf{x}\rangle$, where $2^{n_{\varepsilon}} = 4/a\varepsilon$. Then $\widetilde{O}(1)$ queries to O can gives us $\tilde{\mathbf{q}} \in \mathbb{R}^d$ such that

$$\|\tilde{\boldsymbol{g}} - \boldsymbol{g}\|_{\infty} \leq \varepsilon.$$

Consequently, for any function f, as long as we can construct \tilde{f} such that the condition (1) holds for $g = \nabla f(0)$, then we can approximate $\nabla f(0)$.

In 2019, Gilyén, Arunachalam, and Wiebe developed Jordan's algorithm and improved the efficiency using higher-order finite difference methods:

$$abla f(\mathbf{0}) \cdot oldsymbol{x} pprox \sum_{\ell=1}^m rac{(-1)^{\ell-1}}{\ell} rac{inom{m}{\ell}}{inom{m+\ell}{\ell}} \Big(f(\ell oldsymbol{x}) - f(-\ell oldsymbol{x}) \Big).$$

In 2019, Gilyén, Arunachalam, and Wiebe developed Jordan's algorithm and improved the efficiency using higher-order finite difference methods:

$$abla f(\mathbf{0}) \cdot \boldsymbol{x} pprox \sum_{\ell=1}^m \frac{(-1)^{\ell-1}}{\ell} \frac{\binom{m}{\ell}}{\binom{m+\ell}{\ell}} \Big(f(\ell \boldsymbol{x}) - f(-\ell \boldsymbol{x}) \Big).$$

If $|\partial^{\alpha} f| \leq c^k k^{k/2}$ for all $k \in \mathbb{N}$ and $\alpha \in \mathbb{N}_0^d$ with $|\alpha| = k$, then error is bounded by

$$\sum_{k=2m+1}^{\infty} \left(8acm\sqrt{d} \right)^k$$

for most $x \in aG_n^d$. Here G_n is the grid point that discretises (-1/2, 1/2).

In 2019, Gilyén, Arunachalam, and Wiebe developed Jordan's algorithm and improved the efficiency using higher-order finite difference methods:

$$abla f(\mathbf{0}) \cdot oldsymbol{x} pprox \sum_{\ell=1}^m rac{(-1)^{\ell-1}}{\ell} rac{inom{m}{\ell}}{inom{m+\ell}{\ell}} \Big(f(\ell oldsymbol{x}) - f(-\ell oldsymbol{x}) \Big).$$

If $|\partial^{\alpha} f| \leq c^k k^{k/2}$ for all $k \in \mathbb{N}$ and $\alpha \in \mathbb{N}_0^d$ with $|\alpha| = k$, then error is bounded by

$$\sum_{k=2m+1}^{\infty} \left(8acm\sqrt{d} \right)^k$$

for most $x \in aG_n^d$. Here G_n is the grid point that discretises (-1/2,1/2). To satisfy condition (1), it suffices to choose a such that $a^{-1} = \widetilde{O}(\sqrt{d})$. So the query complexity is $\widetilde{O}(\sqrt{d}/\varepsilon)$.

In 2019, Gilyén, Arunachalam, and Wiebe developed Jordan's algorithm and improved the efficiency using higher-order finite difference methods:

$$abla f(\mathbf{0}) \cdot oldsymbol{x} pprox \sum_{\ell=1}^m rac{(-1)^{\ell-1}}{\ell} rac{inom{m}{\ell}}{inom{m+\ell}{\ell}} \Big(f(\ell oldsymbol{x}) - f(-\ell oldsymbol{x}) \Big).$$

If $|\partial^{\alpha} f| \leq c^k k^{k/2}$ for all $k \in \mathbb{N}$ and $\alpha \in \mathbb{N}_0^d$ with $|\alpha| = k$, then error is bounded by

$$\sum_{k=2m+1}^{\infty} \left(8acm\sqrt{d} \right)^k$$

for most $x \in aG_n^d$. Here G_n is the grid point that discretises (-1/2,1/2). To satisfy condition (1), it suffices to choose a such that $a^{-1} = \widetilde{O}(\sqrt{d})$. So the query complexity is $\widetilde{O}(\sqrt{d}/\varepsilon)$. They also proved the optimality of this result.

Main results

We propose a new quantum algorithm for gradient estimation for another class of functions, achieving exponential speedups over classical algorithms.

Main results

We propose a new quantum algorithm for gradient estimation for another class of functions, achieving exponential speedups over classical algorithms.

Theorem (Our result, informal)

Let $f: \mathbb{R}^d \to \mathbb{R}$ be analytic and well defined at a neighborhood of $\mathbf{0}$ in the complex field. Then there exists a quantum algorithm that computes an approximate $\mathbf{g} \in \mathbb{R}^d$ such that $\|\mathbf{g} - \nabla f(\mathbf{0})\|_{\infty} \leq \varepsilon$, using $\widetilde{O}(1/\varepsilon)$ queries to phase oracles.

Main results

We propose a new quantum algorithm for gradient estimation for another class of functions, achieving exponential speedups over classical algorithms.

Theorem (Our result, informal)

Let $f: \mathbb{R}^d \to \mathbb{R}$ be analytic and well defined at a neighborhood of $\mathbf{0}$ in the complex field. Then there exists a quantum algorithm that computes an approximate $g \in \mathbb{R}^d$ such that $\|g - \nabla f(\mathbf{0})\|_{\infty} \leq \varepsilon$, using $\widetilde{O}(1/\varepsilon)$ queries to phase oracles.

Oracle settings:

Phase oracles O_{f_1}, O_{f_2} for real and imaginary parts of $f(x) = f_1(x) + i f_2(x)$:

$$O_{f_1}: |\boldsymbol{x}\rangle \to e^{if_1(\boldsymbol{x})}|\boldsymbol{x}\rangle, \quad O_{f_2}: |\boldsymbol{x}\rangle \to e^{if_2(\boldsymbol{x})}|\boldsymbol{x}\rangle.$$

Different from previous algorithms, our algorithm employs the spectral method to approximate gradient $\nabla f(\mathbf{0})$.

Different from previous algorithms, our algorithm employs the spectral method to approximate gradient $\nabla f(\mathbf{0})$.

Consider a univariate function f(x) that is sufficiently smooth such that it can be represented by the Taylor series in $\overline{B}(x_0, r) \subset \mathbb{C}$, i.e.

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
, $a_n = \frac{f^{(n)}(x_0)}{n!}$, $|a_n| \le \max_{x \in \overline{B}(x_0, r)} |f(x)| r^{-n}$.

Different from previous algorithms, our algorithm employs the spectral method to approximate gradient $\nabla f(\mathbf{0})$.

Consider a univariate function f(x) that is sufficiently smooth such that it can be represented by the Taylor series in $\overline{B}(x_0,r)\subset\mathbb{C}$, i.e.

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
, $a_n = \frac{f^{(n)}(x_0)}{n!}$, $|a_n| \le \max_{x \in \overline{B}(x_0, r)} |f(x)| r^{-n}$.

Then for $\delta \in (0,r), N \in \mathbb{N}$, and $\omega = e^{-2\pi i/N}$, we have

$$f(x_0 + \delta\omega^k) = \sum_{n=0}^{\infty} a_n (\delta\omega^k)^n = \sum_{n=0}^{N-1} \omega^{kn} c_n,$$

where $c_n = \sum_{m=0}^{\infty} a_{n+mN} \delta^{n+mN}$.

To understand how to obtain derivative information from c_n , let us consider c_1 and c_2 as examples.

$$c_1 = a_1 \delta + a_{1+N} \delta^{1+N} + a_{1+2N} \delta^{1+2N} + \cdots$$

and there is a constant $\kappa > 0$ such that $|a_n| \le \kappa r^{-n}$ for all $n \in \mathbb{N}$, which implies that series $\{a_n\}$ decreases faster than r^{-n} .

To understand how to obtain derivative information from c_n , let us consider c_1 and c_2 as examples.

$$c_1 = a_1 \delta + a_{1+N} \delta^{1+N} + a_{1+2N} \delta^{1+2N} + \cdots$$

and there is a constant $\kappa > 0$ such that $|a_n| \le \kappa r^{-n}$ for all $n \in \mathbb{N}$, which implies that series $\{a_n\}$ decreases faster than r^{-n} .

Adding the fact that $\delta < r$, we can conclude that c_1/δ is close to $a_1 = f'(x_0)$.

To understand how to obtain derivative information from c_n , let us consider c_1 and c_2 as examples.

$$c_1 = a_1 \delta + a_{1+N} \delta^{1+N} + a_{1+2N} \delta^{1+2N} + \cdots$$

and there is a constant $\kappa > 0$ such that $|a_n| \le \kappa r^{-n}$ for all $n \in \mathbb{N}$, which implies that series $\{a_n\}$ decreases faster than r^{-n} .

Adding the fact that $\delta < r$, we can conclude that c_1/δ is close to $a_1 = f'(x_0)$.

The same holds for c_2 as

$$c_2 = a_2 \delta^2 + a_{2+N} \delta^{2+N} + a_{2+2N} \delta^{2+2N} + \cdots$$

Similarly, c_2/δ^2 is close to $a_2 = f''(x_0)/2$.

Now we have $f_k := f(x_0 + \delta \omega^k) = \sum_{n=0}^{N-1} \omega^{kn} c_n$. The inverse discrete Fourier transform gives us

$$c_n = \frac{1}{N} \sum_{k=0}^{N-1} \omega^{-kn} f_k,$$

which means that we obtain c_n from function values f_k .

Now we have $f_k := f(x_0 + \delta \omega^k) = \sum_{n=0}^{N-1} \omega^{kn} c_n$. The inverse discrete Fourier transform gives us

$$c_{\mathbf{n}} = \frac{1}{N} \sum_{k=0}^{N-1} \omega^{-kn} f_k,$$

which means that we obtain c_n from function values f_k .

The error is bounded by

$$\left| \frac{a_n}{a_n} - \frac{c_n}{\delta^n} \right| \le \kappa r^{-n} \sum_{m=1}^{\infty} (\delta/r)^{mN} = \kappa r^{-n} \frac{(\delta/r)^N}{1 - (\delta/r)^N}$$

for some constant κ .

Now we have $f_k := f(x_0 + \delta \omega^k) = \sum_{n=0}^{N-1} \omega^{kn} c_n$. The inverse discrete Fourier transform gives us

$$\mathbf{c_n} = \frac{1}{N} \sum_{k=0}^{N-1} \omega^{-kn} f_k,$$

which means that we obtain c_n from function values f_k .

The error is bounded by

$$\left| \frac{a_n}{\delta^n} - \frac{c_n}{\delta^n} \right| \le \kappa r^{-n} \sum_{m=1}^{\infty} (\delta/r)^{mN} = \kappa r^{-n} \frac{(\delta/r)^N}{1 - (\delta/r)^N}$$

for some constant κ . Particularly, when n=1,

$$\left| f'(0) - \frac{c_1}{\delta} \right| \le \kappa r^{-1} \frac{(\delta/r)^N}{1 - (\delta/r)^N}.$$

For multivariable function f(x), we consider $h(\tau) = f(\tau x)$. Then $h'(0) = \nabla f(0) \cdot x$. Using the above analysis, we derive a real-valued function F(x)

$$F(\boldsymbol{x}) = \frac{1}{N\delta} \sum_{k=0}^{N-1} \omega^{-k} f(\delta \omega^{k} \boldsymbol{x})$$

that gives an approximation for $\nabla f(\mathbf{0}) \cdot \boldsymbol{x}$.

Key ideas

For multivariable function f(x), we consider $h(\tau) = f(\tau x)$. Then $h'(0) = \nabla f(0) \cdot x$. Using the above analysis, we derive a real-valued function F(x)

$$F(\boldsymbol{x}) = \frac{1}{N\delta} \sum_{k=0}^{N-1} \omega^{-k} f(\delta \omega^k \boldsymbol{x})$$

that gives an approximation for $\nabla f(\mathbf{0}) \cdot \mathbf{x}$.

When $N = O(\log(\kappa/\varepsilon))$, we can get an additive error ε , which is significantly smaller than the one obtained by finite difference formulas. This is a crucial point in our work.

Key ideas

For multivariable function f(x), we consider $h(\tau) = f(\tau x)$. Then $h'(0) = \nabla f(0) \cdot x$. Using the above analysis, we derive a real-valued function F(x)

$$F(\boldsymbol{x}) = \frac{1}{N\delta} \sum_{k=0}^{N-1} \omega^{-k} f(\delta \omega^{k} \boldsymbol{x})$$

that gives an approximation for $\nabla f(\mathbf{0}) \cdot \boldsymbol{x}$.

When $N = O(\log(\kappa/\varepsilon))$, we can get an additive error ε , which is significantly smaller than the one obtained by finite difference formulas. This is a crucial point in our work.

Combining this with previous results, we obtain a quantum algorithm that estimates gradient $\nabla f(\mathbf{0})$ with query complexity $\widetilde{O}(1/\varepsilon)$.

Difference 1. The functions used to approximate $\nabla f(\mathbf{0}) \cdot \boldsymbol{x}$.

- ▶ GAW deal with analytic real-valued functions $f : \mathbb{R}^d \to \mathbb{R}$ with specific smoothness conditions. They use the degree-2m central difference approximation.
- ▶ We deal with analytic complex-valued functions $f: \mathbb{C}^d \to \mathbb{C}$ such that $f(\mathbb{R}^d) \subset \mathbb{R}$. We derive the approximating formula using the spectral method.

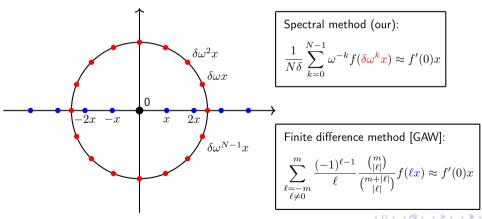
Difference 1. The functions used to approximate $\nabla f(\mathbf{0}) \cdot \boldsymbol{x}$.

- ▶ GAW deal with analytic real-valued functions $f: \mathbb{R}^d \to \mathbb{R}$ with specific smoothness conditions. They use the degree-2m central difference approximation.
- ▶ We deal with analytic complex-valued functions $f: \mathbb{C}^d \to \mathbb{C}$ such that $f(\mathbb{R}^d) \subset \mathbb{R}$. We derive the approximating formula using the spectral method.

Remark

The spectral method also outperforms finite difference method for solving ODEs on a quantum computer. [Childs, Liu, CMP 2019], [Berry J. Phys. A 2010]

Our method offers better error performance in approximating derivatives. In our opinion, one of the key reasons is the way sampling points are selected. As illustrated for 1-dimensional functions



Difference 2. The oracle settings.

- ▶ GAW assumes access to phase oracle O_f : $|x\rangle \to e^{if(x)}|x\rangle$ for $f: \mathbb{R}^d \to \mathbb{R}$.
- ▶ We assume phase oracles for the real and imaginary parts of $f(x) = f_1(x) + i f_2(x)$, denoted as O_{f_1}, O_{f_2} , respectively.

While our oracle assumptions differ from GAW, they are still standard and natural, resembling how data is stored in classical computing.

As a generalization, we present four quantum algorithms for estimating the Hessian: using either finite difference method or spectral for estimating dense or sparse Hessians.

As a generalization, we present four quantum algorithms for estimating the Hessian: using either finite difference method or spectral for estimating dense or sparse Hessians.

Theorem (Hessian estimation based on spectral method)

Let $f: \mathbb{C}^d \to \mathbb{C}$ be analytic and maps \mathbb{R}^d to \mathbb{R} . Then there is a quantum algorithm that computes $\widetilde{\mathbf{H}}$ such that $\|\widetilde{\mathbf{H}} - \mathbf{H}_f(\mathbf{0})\|_{\max} \leq \varepsilon$, using $\widetilde{O}(d/\varepsilon)$ queries to O_{f_1} , O_{f_2} , where $\mathbf{H}_f(\mathbf{0})$ is the Hessian of f at $\mathbf{0}$.

As a generalization, we present four quantum algorithms for estimating the Hessian: using either finite difference method or spectral for estimating dense or sparse Hessians.

Theorem (Hessian estimation based on spectral method)

Let $f: \mathbb{C}^d \to \mathbb{C}$ be analytic and maps \mathbb{R}^d to \mathbb{R} . Then there is a quantum algorithm that computes $\widetilde{\mathbf{H}}$ such that $\|\widetilde{\mathbf{H}} - \mathbf{H}_f(\mathbf{0})\|_{\max} \leq \varepsilon$, using $\widetilde{O}(d/\varepsilon)$ queries to O_{f_1} , O_{f_2} , where $\mathbf{H}_f(\mathbf{0})$ is the Hessian of f at $\mathbf{0}$.

▶ We obtain a lower bound of $\widetilde{\Omega}(d)$.

As a generalization, we present four quantum algorithms for estimating the Hessian: using either finite difference method or spectral for estimating dense or sparse Hessians.

Theorem (Hessian estimation based on spectral method)

Let $f: \mathbb{C}^d \to \mathbb{C}$ be analytic and maps \mathbb{R}^d to \mathbb{R} . Then there is a quantum algorithm that computes $\widetilde{\mathbf{H}}$ such that $\|\widetilde{\mathbf{H}} - \mathbf{H}_f(\mathbf{0})\|_{\max} \leq \varepsilon$, using $\widetilde{O}(d/\varepsilon)$ queries to O_{f_1} , O_{f_2} , where $\mathbf{H}_f(\mathbf{0})$ is the Hessian of f at $\mathbf{0}$.

- ▶ We obtain a lower bound of $\widetilde{\Omega}(d)$.
- ▶ If $\mathbf{H}_f(\mathbf{0})$ is promised to be s-sparse, then the complexity can be reduced to $\widetilde{O}(s/\varepsilon)$.

To illustrate how to derive a quantum algorithm for Hessian estimation from a gradient estimation algorithm, we will provide a brief explanation using the simple case of $f(x) = \langle x|H|x\rangle$.

To illustrate how to derive a quantum algorithm for Hessian estimation from a gradient estimation algorithm, we will provide a brief explanation using the simple case of $f(x) = \langle x|H|x\rangle$.

For fixed $y \in \mathbb{R}^d$, we can get the following linear function h using 2 queries to f

$$h_{oldsymbol{y}}(oldsymbol{x}) = rac{1}{2} \left(f(oldsymbol{x} + oldsymbol{y}) - f(oldsymbol{x})
ight) = \langle oldsymbol{x} | oldsymbol{H} | oldsymbol{y}
angle + rac{1}{2} \langle oldsymbol{y} | oldsymbol{H} | oldsymbol{y}
angle.$$

To illustrate how to derive a quantum algorithm for Hessian estimation from a gradient estimation algorithm, we will provide a brief explanation using the simple case of $f(x) = \langle x|H|x\rangle$.

For fixed $y \in \mathbb{R}^d$, we can get the following linear function h using 2 queries to f

$$h_{m{y}}(m{x}) = rac{1}{2} \left(f(m{x} + m{y}) - f(m{x})
ight) = \langle m{x} | H | m{y}
angle + rac{1}{2} \langle m{y} | H | m{y}
angle.$$

Hence, using Jordan's algorithm, we can compute $H|y\rangle$ for $h_y(x)$. Let $y=e_1,\ldots,e_d$ be the computational basis, then we can recover H using O(d) times quantum gradient estimation algorithm.

To illustrate how to derive a quantum algorithm for Hessian estimation from a gradient estimation algorithm, we will provide a brief explanation using the simple case of $f(x) = \langle x|H|x\rangle$.

For fixed $\mathbf{y} \in \mathbb{R}^d$, we can get the following linear function h using 2 queries to f

$$h_{m{y}}(m{x}) = rac{1}{2} \left(f(m{x} + m{y}) - f(m{x})
ight) = \langle m{x} | H | m{y}
angle + rac{1}{2} \langle m{y} | H | m{y}
angle.$$

Hence, using Jordan's algorithm, we can compute $H|\mathbf{y}\rangle$ for $h_{\mathbf{y}}(\mathbf{x})$. Let $\mathbf{y}=e_1,\ldots,e_d$ be the computational basis, then we can recover H using O(d) times quantum gradient estimation algorithm. $\Omega(d)$ queries are required even for $f(\mathbf{x})=\langle \mathbf{x}|H|\mathbf{x}\rangle$.

To illustrate how to derive a quantum algorithm for Hessian estimation from a gradient estimation algorithm, we will provide a brief explanation using the simple case of $f(x) = \langle x|H|x\rangle$.

For fixed $y \in \mathbb{R}^d$, we can get the following linear function h using 2 queries to f

$$h_{\boldsymbol{y}}(\boldsymbol{x}) = \frac{1}{2} \left(f(\boldsymbol{x} + \boldsymbol{y}) - f(\boldsymbol{x}) \right) = \langle \boldsymbol{x} | H | \boldsymbol{y} \rangle + \frac{1}{2} \langle \boldsymbol{y} | H | \boldsymbol{y} \rangle.$$

Hence, using Jordan's algorithm, we can compute $H|\mathbf{y}\rangle$ for $h_{\mathbf{y}}(\mathbf{x})$. Let $\mathbf{y}=\mathbf{e}_1,\ldots,\mathbf{e}_d$ be the computational basis, then we can recover H using O(d) times quantum gradient estimation algorithm. $\Omega(d)$ queries are required even for $f(\mathbf{x})=\langle \mathbf{x}|H|\mathbf{x}\rangle$.

When H is sparse, then randomly generate $k = O(s \log d)$ vectors y_1, \ldots, y_k are enough to recover H from y_1, \ldots, y_k and Hy_1, \ldots, Hy_k .

ightharpoonup We propose a new quantum algorithm for gradient estimation for analytic functions that can take values from \mathbb{C} .

- ightharpoonup We propose a new quantum algorithm for gradient estimation for analytic functions that can take values from \mathbb{C} .
- ▶ The algorithm achieves exponential speedup over classical algorithms.

- We propose a new quantum algorithm for gradient estimation for analytic functions that can take values from \mathbb{C} .
- ▶ The algorithm achieves exponential speedup over classical algorithms.
- We also propose quantum algorithms for Hessian estimation, which achieve polynomial speedups over classical algorithms. Exponential speedup exist for sparse Hessians.

- We propose a new quantum algorithm for gradient estimation for analytic functions that can take values from \mathbb{C} .
- ► The algorithm achieves exponential speedup over classical algorithms.
- We also propose quantum algorithms for Hessian estimation, which achieve polynomial speedups over classical algorithms. Exponential speedup exist for sparse Hessians.
- ▶ Applications of the gradient and Hessian estimation algorithms? E.g., sparse graph coloring problems [Gebremedhin, Manne, Pothen, SIAM Review 2005].

- ▶ We propose a new quantum algorithm for gradient estimation for analytic functions that can take values from ℂ.
- ► The algorithm achieves exponential speedup over classical algorithms.
- ▶ We also propose quantum algorithms for Hessian estimation, which achieve polynomial speedups over classical algorithms. Exponential speedup exist for sparse Hessians.
- ▶ Applications of the gradient and Hessian estimation algorithms? E.g., sparse graph coloring problems [Gebremedhin, Manne, Pothen, SIAM Review 2005].
- Our analysis shows that finite difference method performs quite worse for Hessian estimation. Is there any way to fix this?

- ightharpoonup We propose a new quantum algorithm for gradient estimation for analytic functions that can take values from \mathbb{C} .
- ▶ The algorithm achieves exponential speedup over classical algorithms.
- ▶ We also propose quantum algorithms for Hessian estimation, which achieve polynomial speedups over classical algorithms. Exponential speedup exist for sparse Hessians.
- ▶ Applications of the gradient and Hessian estimation algorithms? E.g., sparse graph coloring problems [Gebremedhin, Manne, Pothen, SIAM Review 2005].
- Our analysis shows that finite difference method performs quite worse for Hessian estimation. Is there any way to fix this?

Thanks very much for your time!

