Randomized quantum singular value transformation

Changpeng Shao

Academy of Mathematics and Systems Science, Chinese Academy of Sciences based on joint work with Shantanav Chakraborty, Soumyabrata Hazra,
Tongyang Li, Xinzhao Wang and Yuxin Zhang
(arXiv:2504.02385, 91 pages)

Quantum Information and Optimization (QIOP) workshop 13-19 April 2025

QSVT

Quantum singular value transformation (QSVT) is a unifying framework that encapsulates most known quantum algorithms and serves as the foundation for new ones. (e.g. Grover, quantum phase estimation, Hamiltonian simulation, solving linear systems, etc.) [Gilyen-Su-Low-Wiebe, STOC'19]

QSVT

- Quantum singular value transformation (QSVT) is a unifying framework that encapsulates most known quantum algorithms and serves as the foundation for new ones. (e.g. Grover, quantum phase estimation, Hamiltonian simulation, solving linear systems, etc.) [Gilyen-Su-Low-Wiebe, STOC'19]
- It applies polynomial transformations on the singular values of an operator A, provided A is embedded in the top-left block of a unitary, known as block encoding. Namely, (I will assume A is Hermitian and $\|A\| \leq 1$ in this talk)

$$U := \begin{bmatrix} A & * \\ * & * \end{bmatrix} \quad \xrightarrow{\mathsf{poly} \ f(x)} \quad \widetilde{U} = \begin{bmatrix} f(A) & * \\ * & * \end{bmatrix}$$
 (unitary) (unitary)

QSVT

- Quantum singular value transformation (QSVT) is a unifying framework that encapsulates most known quantum algorithms and serves as the foundation for new ones. (e.g. Grover, quantum phase estimation, Hamiltonian simulation, solving linear systems, etc.) [Gilyen-Su-Low-Wiebe, STOC'19]
- It applies polynomial transformations on the singular values of an operator A, provided A is embedded in the top-left block of a unitary, known as block encoding. Namely, (I will assume A is Hermitian and $\|A\| \leq 1$ in this talk)

$$U := egin{bmatrix} A & * \\ * & * \end{bmatrix} & \xrightarrow{\mathsf{poly}\ f(x)} & \widetilde{U} = egin{bmatrix} f(A) & * \\ * & * \end{bmatrix} \ & \text{(unitary)} \end{cases}$$

Usually, the most technical part is constructing U efficiently.

Previous works on QSVT

The quantum circuit for QSVT: Assume $f(x) \in \mathbb{C}[x]$, degree d, even/odd, and $|f(x)| \leq 1$ for all $x \in [-1,1]$, then there exists $\Phi := (\phi_1, \ldots, \phi_d) \in \mathbb{R}^d$, s.t.

$$\begin{bmatrix} f(A) & * \\ * & * \end{bmatrix} = U_{\Phi} = \begin{cases} e^{\mathbf{i}\phi_1 Z} U \prod_{j=1}^{(d-1)/2} \left(e^{\mathbf{i}\phi_{2j} Z} U^{\dagger} e^{\mathbf{i}\phi_{2j+1} Z} U \right), & \text{if } d \text{ is odd,} \\ \prod_{j=1}^{d/2} \left(e^{\mathbf{i}\phi_{2j-1} Z} U^{\dagger} e^{\mathbf{i}\phi_{2j} Z} U \right), & \text{if } d \text{ is even.} \end{cases}$$

Previous works on QSVT

The quantum circuit for QSVT: Assume $f(x) \in \mathbb{C}[x]$, degree d, even/odd, and $|f(x)| \leq 1$ for all $x \in [-1,1]$, then there exists $\Phi := (\phi_1, \ldots, \phi_d) \in \mathbb{R}^d$, s.t.

$$\begin{bmatrix} f(A) & * \\ * & * \end{bmatrix} = U_{\Phi} = \begin{cases} e^{\mathbf{i}\phi_1 Z} U \prod_{j=1}^{(d-1)/2} \left(e^{\mathbf{i}\phi_{2j} Z} U^{\dagger} e^{\mathbf{i}\phi_{2j+1} Z} U \right), & \text{if } d \text{ is odd,} \\ \prod_{j=1}^{d/2} \left(e^{\mathbf{i}\phi_{2j-1} Z} U^{\dagger} e^{\mathbf{i}\phi_{2j} Z} U \right), & \text{if } d \text{ is even.} \end{cases}$$

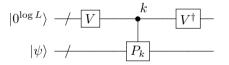
Assuming access to $U = e^{iH}$, then there exists Φ such that

$$U_{\Phi} = \begin{bmatrix} P(\cos(A)) & * \\ * & * \end{bmatrix}, \quad H = \begin{bmatrix} A^{\dagger} \\ A \end{bmatrix}, \quad f(x) = P(\cos(x)).$$

See [Lloyd et al, arXiv:2104.01410; Dong-Lin-Tong, PRX Quantum 2022]

Assume $A = \sum_{k=1}^{L} \lambda_k P_k$ is a unitary (e.g., Pauli) decomposition. Then how to do QSVT?

- Assume $A = \sum_{k=1}^{L} \lambda_k P_k$ is a unitary (e.g., Pauli) decomposition. Then how to do QSVT?
- ▶ Linear combination of unitaries (LCU): By LCU, we can construct a block encoding of A. Circuit depth is O(L), number of ancilla qubits is $O(\log L)$.



Without loss of generality, we assume $\lambda_k > 0$ and $\sum_k \lambda_k = 1$, then

$$V|0\rangle = \sum_{k=1}^{L} \sqrt{\lambda_k} |k\rangle.$$

Is that possible to do QSVT using 1 or O(1) ancilla qubits?

Is that possible to do QSVT using 1 or O(1) ancilla qubits?

Theorem 1 (Ancilla qubits for LCU)

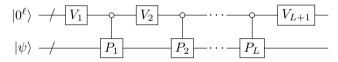
Assume $A = \sum_{k=1}^{L} \lambda_k P_k$ be a unitary decomposition of A, then $\ell = \Omega(\log L)$ ancilla qubits are required to exactly block-encoding A.

Is that possible to do QSVT using 1 or O(1) ancilla qubits?

Theorem 1 (Ancilla qubits for LCU)

Assume $A = \sum_{k=1}^{L} \lambda_k P_k$ be a unitary decomposition of A, then $\ell = \Omega(\log L)$ ancilla qubits are required to exactly block-encoding A.

The above holds for a fairly general circuit model:

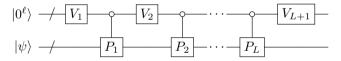


Is that possible to do QSVT using 1 or O(1) ancilla qubits?

Theorem 1 (Ancilla qubits for LCU)

Assume $A = \sum_{k=1}^{L} \lambda_k P_k$ be a unitary decomposition of A, then $\ell = \Omega(\log L)$ ancilla qubits are required to exactly block-encoding A.

The above holds for a fairly general circuit model:



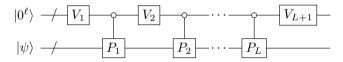
► Rmk. The above lower bound might give some hint about the number of ancillas needed for multivariate QSP/QSVT theory!?

Is that possible to do QSVT using 1 or O(1) ancilla qubits?

Theorem 1 (Ancilla qubits for LCU)

Assume $A = \sum_{k=1}^{L} \lambda_k P_k$ be a unitary decomposition of A, then $\ell = \Omega(\log L)$ ancilla qubits are required to exactly block-encoding A.

The above holds for a fairly general circuit model:



- ► Rmk. The above lower bound might give some hint about the number of ancillas needed for multivariate QSP/QSVT theory!?
- ightharpoonup Question: Can we construct an approximate block-encoding of A using 1 or O(1) ancilla qubits? [Gilyén-Vasconcelos obtained such a result for multiplication of block encodings]

► So we should do QSVT without block-encoding.

- ► So we should do QSVT without block-encoding.
- Prior work: qDRIFT.

If $f(x) = e^{\mathbf{i}xt}$, then we can use qDRIFT [Campbell, PRL'19]. Define distribution $\mathcal{D} = \{(\lambda_k, P_k)\}_{k=1}^L$. Sample ℓ Paulis $P_{j_1}, \ldots, P_{j_\ell}$, then on average (for some β)

$$e^{\mathbf{i}\beta P_{j_1}}e^{\mathbf{i}\beta P_{j_2}}\cdots e^{\mathbf{i}\beta P_{j_\ell}} \approx e^{\mathbf{i}Ht}$$

- \circledast $\ell \approx t^2$ is independent of L.
- \circledast It shows advantages over Trotter/QSVT when $t \ll L$.

Our results

Theorem 2

Let $f(x) \in \mathbb{C}[x]$ be a degree-d polynomial such that $|f(x)| \leq 1$ for all $x \in [-1,1]$ and has parity- $(d \mod 2)$. Assume A is Hermitian with $||A|| \leq 1$ and

$$U = \begin{bmatrix} cI & sA \\ sA^{\dagger} & -cI \end{bmatrix},$$

where

$$n = \widetilde{\Theta}(d), \quad s = 1/\sqrt{n}, \quad c = \sqrt{1 - 1/n}, \quad \alpha = \widetilde{\Theta}(\sqrt{n}).$$

Then there exists $\Phi \in \mathbb{R}^n$ such that

$$U_{\Phi}pprox egin{bmatrix} * & f(A/lpha) \ * & * \end{bmatrix}$$
 if d is odd, and $U_{\Phi}pprox egin{bmatrix} * & * \ * & f(A/lpha) \end{bmatrix}$ if d is even.

Rmk. U and U_{Φ} may not be unitary. U is unitary iff A is unitary. The above is comparable to the key theorem for QSVT.

► Recall (assume *n* is even for convenience)

$$U = \begin{bmatrix} cI & sA \\ sA^{\dagger} & -cI \end{bmatrix}, \quad U_{\Phi} = \prod_{j=1}^{n/2} \left(e^{\mathbf{i}\phi_{2j-1}Z} \mathbf{U}^{\dagger} e^{\mathbf{i}\phi_{2j}Z} \mathbf{U} \right).$$

► Recall (assume *n* is even for convenience)

$$U = \begin{bmatrix} cI & sA \\ sA^{\dagger} & -cI \end{bmatrix}, \quad U_{\Phi} = \prod_{j=1}^{n/2} \left(e^{\mathbf{i}\phi_{2j-1}Z} \mathbf{U}^{\dagger} e^{\mathbf{i}\phi_{2j}Z} \mathbf{U} \right).$$

For $A = \sum_{k=1}^{L} \lambda_k P_k$, we consider the distribution $\mathcal{D} = \{(\lambda_k, P_k)\}_{k=1}^{L}$. We independently sample n Paulis P_{j_1}, \ldots, P_{j_n} and replace each U or U^{\dagger} with

$$U_{j_k} = \begin{bmatrix} cI & sP_{j_k} \\ sP_{j_k}^{\dagger} & -cI \end{bmatrix}$$

Denote the resulting unitary as $U_{\Phi}^{(J)}$ with $J=(j_1,\ldots,j_n)$. Then

$$\mathbb{E}_J[U_{\Phi}^{(J)}] = U_{\Phi}.$$

► Uses 1 ancilla qubit.

- ► Uses 1 ancilla qubit.
- ▶ Circuit depth is usually $\tilde{O}(d^2)$ because $\alpha \approx \sqrt{d}$. [Note that O(d) for the standard QSVT]

- ► Uses 1 ancilla qubit.
- ▶ Circuit depth is usually $\tilde{O}(d^2)$ because $\alpha \approx \sqrt{d}$. [Note that O(d) for the standard QSVT]

- Uses 1 ancilla qubit.
- ► Circuit depth is usually $\widetilde{O}(d^2)$ because $\alpha \approx \sqrt{d}$. [Note that O(d) for the standard QSVT]

For example, let $f(x) = e^{\mathbf{i}xt}$.

 ${}_{ ext{\circledast}}$ There exists a polynomial of degree O(t) approximating it.

- Uses 1 ancilla qubit.
- ► Circuit depth is usually $\widetilde{O}(d^2)$ because $\alpha \approx \sqrt{d}$. [Note that O(d) for the standard QSVT]

- \circledast There exists a polynomial of degree O(t) approximating it.
- \circledast So $\alpha \approx \sqrt{t}$.

- Uses 1 ancilla qubit.
- ► Circuit depth is usually $\widetilde{O}(d^2)$ because $\alpha \approx \sqrt{d}$. [Note that O(d) for the standard QSVT]

- ${}^{ ext{\circledast}}$ There exists a polynomial of degree O(t) approximating it.
- \circledast So $\alpha \approx \sqrt{t}$.
- \circledast By our result, we can only implement $e^{{\bf i}At/\alpha}=e^{{\bf i}A\sqrt{t}}.$

- Uses 1 ancilla qubit.
- ► Circuit depth is usually $\widetilde{O}(d^2)$ because $\alpha \approx \sqrt{d}$. [Note that O(d) for the standard QSVT]

- ${}_{ ext{\circledast}}$ There exists a polynomial of degree O(t) approximating it.
- \circledast So $\alpha \approx \sqrt{t}$.
- \circledast By our result, we can only implement $e^{{f i} At/lpha}=e^{{f i} A\sqrt{t}}$
- \circledast To implement $e^{\mathbf{i}At}$, we need to set $t \leftarrow t^2$ in the beginning, i.e., consider $e^{\mathbf{i}xt^2}$.

- Uses 1 ancilla qubit.
- ► Circuit depth is usually $\widetilde{O}(d^2)$ because $\alpha \approx \sqrt{d}$. [Note that O(d) for the standard QSVT]

- \circledast There exists a polynomial of degree O(t) approximating it.
- \circledast So $\alpha \approx \sqrt{t}$.
- \circledast By our result, we can only implement $e^{{f i} At/\alpha}=e^{{f i} A\sqrt{t}}.$
- \circledast To implement $e^{\mathbf{i}At}$, we need to set $t \leftarrow t^2$ in the beginning, i.e., consider $e^{\mathbf{i}xt^2}$.
- * Similar for $f(x) = x^d, (\kappa x)^{-1}, e^{xt}$.

- Uses 1 ancilla qubit.
- ► Circuit depth is usually $\widetilde{O}(d^2)$ because $\alpha \approx \sqrt{d}$. [Note that O(d) for the standard QSVT]

For example, let $f(x) = e^{\mathbf{i}xt}$.

- \circledast There exists a polynomial of degree O(t) approximating it.
- \circledast So $\alpha \approx \sqrt{t}$.
- \circledast By our result, we can only implement $e^{{\bf i}At/\alpha}=e^{{\bf i}A\sqrt{t}}.$
- \circledast To implement $e^{\mathbf{i}At}$, we need to set $t \leftarrow t^2$ in the beginning, i.e., consider $e^{\mathbf{i}xt^2}$.
- * Similar for $f(x) = x^d, (\kappa x)^{-1}, e^{xt}$.
- ► This has also been observed in several previous randomized quantum algorithms: qDRIFT, qSWIFT, and randomized LCU.

[Nakaji et al., PRX Quantum'24; Wang et al. PRX Quantum'24; Chakraborty, Quantum'24]

Theorem 3 (Sample complexity)

Given $\mathcal{D} = \{(\lambda_k, P_k)\}_{k=1}^L$, $\Omega(t^2/\varepsilon^2)$ samples are required to estimate $\langle \psi_1 | e^{\mathbf{i}At} | \psi_0 \rangle \pm \varepsilon$ for any randimized quantum algorithms with only access to \mathcal{D} .

Theorem 3 (Sample complexity)

Given $\mathcal{D} = \{(\lambda_k, P_k)\}_{k=1}^L$, $\Omega(t^2/\varepsilon^2)$ samples are required to estimate $\langle \psi_1 | e^{iAt} | \psi_0 \rangle \pm \varepsilon$ for any randimized quantum algorithms with only access to \mathcal{D} .

A randomized quantum algorithm has the following form:

$$W_{Q_1,...,Q_c} = U_1 Q_1 U_2 Q_2 \cdots U_c Q_c U_{c+1},$$

- $ightharpoonup Q_1, \ldots, Q_c$ are randomly and independently generated unitaries, each depends on a random unitary from $\{P_1, \ldots, P_L\}$.
- $ightharpoonup U_1, \ldots, U_{c+1}$ are unitaries independent of $\{P_1, \ldots, P_L\}$.
- ightharpoonup We also assume $\mathbb{E}[W_{Q_1,\ldots,Q_c}]=e^{\mathbf{i}At}$.

Theorem 3 (Sample complexity)

Given $\mathcal{D} = \{(\lambda_k, P_k)\}_{k=1}^L$, $\Omega(t^2/\varepsilon^2)$ samples are required to estimate $\langle \psi_1 | e^{\mathbf{i}At} | \psi_0 \rangle \pm \varepsilon$ for any randimized quantum algorithms with only access to \mathcal{D} .

A randomized quantum algorithm has the following form:

$$W_{Q_1,...,Q_c} = U_1 Q_1 U_2 Q_2 \cdots U_c Q_c U_{c+1},$$

- $ightharpoonup Q_1, \ldots, Q_c$ are randomly and independently generated unitaries, each depends on a random unitary from $\{P_1, \ldots, P_L\}$.
- $ightharpoonup U_1, \ldots, U_{c+1}$ are unitaries independent of $\{P_1, \ldots, P_L\}$.
- ightharpoonup We also assume $\mathbb{E}[W_{Q_1,\ldots,Q_c}]=e^{\mathbf{i}At}$.

By Hoeffding's inequality, $\Omega(1/\varepsilon^2)$ classical repetitions are required, so we have

circuit depth
$$c = \Omega(t^2)$$
.

Theorem 3 (Sample complexity)

Given $\mathcal{D} = \{(\lambda_k, P_k)\}_{k=1}^L$, $\Omega(t^2/\varepsilon^2)$ samples are required to estimate $\langle \psi_1 | e^{\mathbf{i}At} | \psi_0 \rangle \pm \varepsilon$ for any randimized quantum algorithms with only access to \mathcal{D} .

A randomized quantum algorithm has the following form:

$$W_{Q_1,...,Q_c} = U_1 Q_1 U_2 Q_2 \cdots U_c Q_c U_{c+1},$$

- $ightharpoonup Q_1, \ldots, Q_c$ are randomly and independently generated unitaries, each depends on a random unitary from $\{P_1, \ldots, P_L\}$.
- $ightharpoonup U_1, \ldots, U_{c+1}$ are unitaries independent of $\{P_1, \ldots, P_L\}$.
- ightharpoonup We also assume $\mathbb{E}[W_{Q_1,...,Q_c}] = e^{\mathbf{i}At}$.

By Hoeffding's inequality, $\Omega(1/\varepsilon^2)$ classical repetitions are required, so we have circuit depth $c=\Omega(t^2)$.

Question: Can we prove a lower bound of $\Omega(d^2)$ for general polynomials?

• (QSVT with Trotter) We proposed an algorithm for QSVT with 1 ancilla qubit and circuit depth is $\widetilde{O}(d^{1+o(1)})$.

• (QSVT with Trotter) We proposed an algorithm for QSVT with 1 ancilla qubit and circuit depth is $\widetilde{O}(d^{1+o(1)})$.

Indeed, we have an algorithm for more general circuits

$$W = V_0 \prod_{j=1}^{d} e^{iH^{(j)}} V_j, \quad H^{(j)} = \sum_{\gamma=1}^{\Gamma_j} H_{\gamma}^{(j)}.$$

• (QSVT with Trotter) We proposed an algorithm for QSVT with 1 ancilla qubit and circuit depth is $\widetilde{O}(d^{1+o(1)})$.

Indeed, we have an algorithm for more general circuits

$$W = V_0 \prod_{j=1}^{d} e^{\mathbf{i}H^{(j)}} V_j, \quad H^{(j)} = \sum_{\gamma=1}^{\Gamma_j} H_{\gamma}^{(j)}.$$

• (QSVT with Trotter) We proposed an algorithm for QSVT with 1 ancilla qubit and circuit depth is $\widetilde{O}(d^{1+o(1)})$.

Indeed, we have an algorithm for more general circuits

$$W = V_0 \prod_{j=1}^{d} e^{\mathbf{i}H^{(j)}} V_j, \quad H^{(j)} = \sum_{\gamma=1}^{\Gamma_j} H_{\gamma}^{(j)}.$$

Question: Can we do in circuit depth O(d)?

▶ (QSVT with qDRIFT) We have another randomized algorithm for QSVT.

• (QSVT with Trotter) We proposed an algorithm for QSVT with 1 ancilla qubit and circuit depth is $\widetilde{O}(d^{1+o(1)})$.

Indeed, we have an algorithm for more general circuits

$$W = V_0 \prod_{j=1}^{d} e^{\mathbf{i}H^{(j)}} V_j, \quad H^{(j)} = \sum_{\gamma=1}^{\Gamma_j} H_{\gamma}^{(j)}.$$

- (QSVT with qDRIFT) We have another randomized algorithm for QSVT.
 - QSVT with qDRIFT: uses 1 ancilla qubit as long as the input function has a Laurent polynomial approximation.

• (QSVT with Trotter) We proposed an algorithm for QSVT with 1 ancilla qubit and circuit depth is $\widetilde{O}(d^{1+o(1)})$.

Indeed, we have an algorithm for more general circuits

$$W = V_0 \prod_{j=1}^{d} e^{iH^{(j)}} V_j, \quad H^{(j)} = \sum_{\gamma=1}^{\Gamma_j} H_{\gamma}^{(j)}.$$

- (QSVT with qDRIFT) We have another randomized algorithm for QSVT.
 - QSVT with qDRIFT: uses 1 ancilla qubit as long as the input function has a Laurent polynomial approximation.
 - The Randomized QSVT: uses 3 ancilla qubits to implement a general real function. But it can implement any bounded function.

• (QSVT with Trotter) We proposed an algorithm for QSVT with 1 ancilla qubit and circuit depth is $\widetilde{O}(d^{1+o(1)})$.

Indeed, we have an algorithm for more general circuits

$$W = V_0 \prod_{j=1}^{d} e^{\mathbf{i}H^{(j)}} V_j, \quad H^{(j)} = \sum_{\gamma=1}^{\Gamma_j} H_{\gamma}^{(j)}.$$

- ▶ (QSVT with qDRIFT) We have another randomized algorithm for QSVT.
 - QSVT with qDRIFT: uses 1 ancilla qubit as long as the input function has a Laurent polynomial approximation.
 - The Randomized QSVT: uses 3 ancilla qubits to implement a general real function. But it can implement any bounded function.
- As applications, we proposed near-optimal quantum algorithms for quantum linear systems and ground state problems without block-encoding.

• (QSVT with Trotter) We proposed an algorithm for QSVT with 1 ancilla qubit and circuit depth is $\widetilde{O}(d^{1+o(1)})$.

Indeed, we have an algorithm for more general circuits

$$W = V_0 \prod_{j=1}^{d} e^{\mathbf{i}H^{(j)}} V_j, \quad H^{(j)} = \sum_{\gamma=1}^{\Gamma_j} H_{\gamma}^{(j)}.$$

- ▶ (QSVT with qDRIFT) We have another randomized algorithm for QSVT.
 - QSVT with qDRIFT: uses 1 ancilla qubit as long as the input function has a Laurent polynomial approximation.
 - The Randomized QSVT: uses 3 ancilla qubits to implement a general real function. But it can implement any bounded function.
- As applications, we proposed near-optimal quantum algorithms for quantum linear systems and ground state problems without block-encoding.