Faster quantum-inspired algorithms for solving linear systems

Changpeng Shao and Ashley Montanaro

School of Mathematics, University of Bristol, UK 5-8 July 2021, 16th TQC

arXiv:2103.10309

Solving linear systems is a fundamental problem in machine learning

Solving linear systems is a fundamental problem in machine learning

In the field of quantum computing, many algorithms are known, eg

- ► Harrow-Hassidim-Lloyd algorithm for sparse linear systems
- Block-encoding method for general linear systems

Solving linear systems is a fundamental problem in machine learning

In the field of quantum computing, many algorithms are known, eg

- Harrow-Hassidim-Lloyd algorithm for sparse linear systems
- Block-encoding method for general linear systems

A useful way to construct block-encoding of a matrix is based on the QRAM data structure

Solving linear systems is a fundamental problem in machine learning

In the field of quantum computing, many algorithms are known, eg

- Harrow-Hassidim-Lloyd algorithm for sparse linear systems
- Block-encoding method for general linear systems

A useful way to construct block-encoding of a matrix is based on the QRAM data structure

But assuming access to QRAM, there exist (quantum-inspired) classical algorithms that can also achieve poly-log dependence on the dimension [Ewin Tang 2018]

Solving linear systems is a fundamental problem in machine learning

In the field of quantum computing, many algorithms are known, eg

- Harrow-Hassidim-Lloyd algorithm for sparse linear systems
- Block-encoding method for general linear systems

A useful way to construct block-encoding of a matrix is based on the QRAM data structure

But assuming access to QRAM, there exist (quantum-inspired) classical algorithms that can also achieve poly-log dependence on the dimension [Ewin Tang 2018]

As a result, exponential quantum speedups for many machine learning problems reduce to polynomial quantum speedups

Solving linear systems is a fundamental problem in machine learning

In the field of quantum computing, many algorithms are known, eg

- Harrow-Hassidim-Lloyd algorithm for sparse linear systems
- Block-encoding method for general linear systems

A useful way to construct block-encoding of a matrix is based on the QRAM data structure

But assuming access to QRAM, there exist (quantum-inspired) classical algorithms that can also achieve poly-log dependence on the dimension [Ewin Tang 2018]

As a result, exponential quantum speedups for many machine learning problems reduce to polynomial quantum speedups

Question: How large is this polynomial speedup?

Main results

We focus on the solving of linear systems Ax = b with QRAM:

Algorithm	Complexity	Ref.	Assumptions
Quantum	$\widetilde{O}(\kappa_F)$	[1]	
Randomized	$\widetilde{O}(s\kappa_F^2)$	[2]	row sparse
classical	$\widetilde{O}(s\mathrm{Tr}(A)\ A^+\)$	[3]	sparse, SPD
Quantum-inspired	$\widetilde{O}(\kappa_F^6\kappa^6/\epsilon^4)$	[4]	
classical	$\widetilde{O}(\kappa_F^6\kappa^2/\epsilon^2)$	Our	
	$\widetilde{O}(\operatorname{Tr}(A)^3 A^+ ^3 \kappa / \epsilon^2)$	Our	SPD

$$\kappa_F = \|A\|_F \|A^{-1}\|, \quad \kappa = \|A\| \|A^{-1}\|, \quad s = \text{row sparsity},$$
 SPD = symmetric positive definite.

- [1] Chakraborty, Gilyén, Jeffery 2018 [2] Strohmer, Vershynin 2009
- [3] Leventhal, Lewis 2010 [4] Gilyén, Song, Tang 2020

$$|A||_F^2 = \sum_{i,j} |A_{ij}|^2$$

Implication 1: A is row sparse

Classical:

QRAM model $\Rightarrow \widetilde{O}(s||A||_F^2||A^{-1}||^2)$

Quantum:

- column sparse + sparse access input model
 - $\Rightarrow \widetilde{O}(s||A||_{\max}||A^{-1}||)^2$
 - ⇒ large quantum speedup is possible
- ► column dense + QRAM model
 - $\Rightarrow \widetilde{O}(\|A\|_F \|A^{-1}\|)$
 - \Rightarrow quadratic quantum speedup when $s = \widetilde{O}(1)$

Both achieve poly-log dependence on ϵ

Implication 2: A is row sparse

The output:

Classical: a sparse vector

Quantum: a quantum state

If to estimate the norm of the solution (Assume QRAM + column dense):

▶ Classical: $\widetilde{O}(s\|A\|_F^2\|A^{-1}\|^2)$

▶ Quantum: $\widetilde{O}(\|A\|_F\|A^{-1}\|/\epsilon)$

 \Rightarrow Classical algorithm is better in terms of the dependence on ϵ

Implication 3: A is sparse and SPD

Classical:

- $\widetilde{O}(s\mathrm{Tr}(A)\|A^{-1}\|)$
- the output is a sparse vector

Quantum:

- $\widetilde{O}(s||A||_{\max}||A^{-1}||)$
- ▶ the output is a quantum state
- \Rightarrow May have no quantum speedup if $\mathrm{Tr}(A) = \widetilde{\Theta}(\|A\|_{\mathrm{max}})$.

Good news: For some SPD linear systems, quantum computers can have quadratically better dependence on the condition number [Davide, Dunjko, arXiv:2101.11868]

Implication 4: A is dense in the QRAM model

Classical: $\widetilde{O}(\|A\|_F^6 \|A\|^2 \|A^{-1}\|^8 / \epsilon^2)$

This improves the previous best result $\widetilde{O}(\|A\|_F^6\|A\|^6\|A^{-1}\|^{12}/\epsilon^4)$ of Gilyén, Song, Tang 2020

The output is a classical analogue of the quantum output

Quantum: $\widetilde{O}(\|A\|_F\|A^{-1}\|)$

⇒ Large polynomial quantum speedup still exists.

The main technique: Kaczmarz method

Background:

first discovered by the Polish mathematician Stefan Kaczmarz in 1937.

rediscovered in the field of image reconstruction from projections by Richard Gordon, Robert Bender, and Gabor Herman in 1970.

The main technique: Kaczmarz method

It is an iterative algorithm for solving linear equation systems $A\mathbf{x} = \mathbf{b}$

Assume A is $m \times n$. Let \mathbf{x}_0 be an arbitrary initial approximation to the solution. For $k = 0, 1, \ldots$, compute

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \frac{b_{r_k} - \langle A_{r_k*} | \mathbf{x}_k \rangle}{\|A_{r_k*}\|^2} A_{r_k*},$$

where A_{r_k*} is the r_k -th row of A, and r_k is chosen from $\{1,...,m\}$ randomly with probability proportional to $\|A_{r_k*}\|^2$

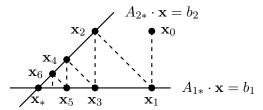


Figure 1: An illustration of Kaczmarz algorithm when m=2

Conclusions and outlooks

Conclusions:

- We reduced the gap between quantum and quantum-inspired classical algorithm for linear equations from $\kappa_F : \kappa_F^6 \kappa^6 / \epsilon^4$ to $\kappa_F : \kappa_F^6 \kappa^2 / \epsilon^2$.
- In the row sparse case, the quantum speedup is quadratic if assuming access to QRAM.

Outlooks:

Reduce the dependence of quantum-inspired classical algorithm on $||A||_F$.

Maybe generalized Kaczmarz methods, e.g., [arXiv:1712.09677, arXiv:1706.01108, arXiv:1902.09946]

Thank you!